Errata

of the book

3+1 Formalism in General Relativity

https://relativite.obspm.fr/3p1
7 March 2024

Many thanks to Ngô Quôc Anh, Zu-Cheng Chen, F. Semih Dündar, Ted Jacobson, Yat-lo Lay, Jorge Lopes, Grégoire Martinon, Christian Schell and Claire Somé!

- Page 12, Eq. (2.23): the symbol T in the r.h.s. should not be bold, i.e. the equation should be

$$
\boldsymbol{T}=T_{\beta_{1} \ldots \beta_{\ell}}^{\alpha_{1} \ldots \alpha_{k}} \boldsymbol{e}_{\alpha_{1}} \otimes \ldots \otimes \boldsymbol{e}_{\alpha_{k}} \otimes \boldsymbol{e}^{\beta_{1}} \otimes \ldots \otimes \boldsymbol{e}^{\beta_{\ell}}
$$

- Page 16, 4th line: the symbol u^{α} should not be bold.
- Page 20, Eq. (2.56): the vector \boldsymbol{u} in the r.h.s. must be replaced by \boldsymbol{v}, so that the equation becomes

$$
\boldsymbol{\nabla}_{\boldsymbol{v}} \boldsymbol{T}:=\boldsymbol{\nabla} \boldsymbol{T}(\underbrace{\ldots, \ldots, ., ~ v}_{k+\ell \text { slots }}) .
$$

- Page 20, Eq. (2.58): the symbol T in the r.h.s. should not be bold, i.e. the equation should be

$$
(\boldsymbol{\nabla} \cdot \boldsymbol{T})^{\alpha_{1} \ldots \alpha_{k-1}}{ }_{\beta_{1} \ldots \beta_{\ell}}=\boldsymbol{\nabla}_{\mu} T^{\alpha_{1} \ldots \alpha_{k-1} \mu}{ }_{\beta_{1} \ldots \beta_{\ell}} .
$$

- Page 24, Eq. (2.81): a factor $1 / 2$ is missing in the r.h.s.: the equation should be

$$
R_{\delta \alpha \beta}^{\gamma}=\frac{R}{2}\left(\delta_{\alpha}^{\gamma} g_{\delta \beta}-\delta_{\beta}^{\gamma} g_{\delta \alpha}\right) \quad(n=2) .
$$

- Page 31, in the second line, just after "In other words": insert "for any $p \in \Sigma$,".
- Pages 31, replace any occurrence of $\mathscr{T}_{p}(\hat{\Sigma})$ by $\mathscr{T}_{\Phi^{-1}(p)}(\hat{\Sigma})$, as well as any occurrence of $\mathscr{T}_{p}^{*}(\hat{\Sigma})$ by $\mathscr{T}_{\Phi^{-1}(p)}^{*}(\hat{\Sigma})$.
- Page 50 , in the left-hand sides of the two unnumbered equations at the end of the page, as well as in the text two lines above them: the term $D_{\beta} D_{\gamma} \nu^{\gamma}$ must be replaced by $D_{\beta} D_{\alpha} \nu^{\gamma}$, so that these left-hand sides becomes

$$
D_{\alpha} D_{\beta} v^{\gamma}-D_{\beta} D_{\alpha} v^{\gamma}=\cdots
$$

- Page 33, Eq. (3.11): insert a \pm sign immediately after the equal sign, so that Eq. (3.11) becomes

$$
n:= \pm\left(\pm \vec{\nabla}_{t} \cdot \vec{\nabla}_{t}\right)^{-1 / 2} \vec{\nabla}_{t}
$$

- Page 33, first line below Eq. (3.13): after "the other one being $\boldsymbol{n}^{\prime}=\boldsymbol{n}$.", add "The choice made in Eq. (3.11) ensures that \boldsymbol{n} is directed towards increasing values of t ".
- Page 35, first line below the unnumbered equation at the top of the page: replace $\alpha:=$ $\left(-\vec{\nabla}_{t} \cdot \vec{\nabla}_{t}\right)^{-1 / 2}$ by $\alpha:=-\left(-\vec{\nabla}_{t} \cdot \vec{\nabla}_{t}\right)^{-1 / 2}$.
- Page 51, unnumbered equation between Eqs. (3.74) and (3.75): some indices of the Riemann tensor are inline instead of being subscripts; the correct equation should be written

$$
\begin{aligned}
\gamma^{\alpha \beta} \gamma_{\alpha \mu} n^{v} \gamma_{\beta}^{\rho} n^{\sigma}{ }^{4} R^{\mu}{ }_{v \rho \sigma} & =\gamma^{\rho}{ }_{\mu} n^{v} n^{\sigma 4} R^{\mu}{ }_{v \rho \sigma}=\underbrace{{ }^{4} R^{\mu}{ }_{v \mu \sigma}}_{{ }^{4} R_{v \sigma}} n^{v} n^{\sigma}+\underbrace{{ }^{4} R^{\mu}{ }_{v \rho \sigma} n^{\rho} n_{\mu} n^{v} n^{\sigma}}_{0} \\
& ={ }^{4} R_{\mu v} n^{\mu} n^{v} .
\end{aligned}
$$

- Page 62, second line in the formula for a_{α} at the page's top: some signs are not correct; this line should be

$$
=\frac{1}{N} n_{\alpha} n^{\mu} \nabla_{\mu} N-N n^{\mu} \nabla_{\alpha}\left(-\frac{1}{N} n_{\mu}\right)=\frac{1}{N} n_{\alpha} n^{\mu} \nabla_{\mu} N-\frac{1}{N} \nabla_{\alpha} N \underbrace{n^{\mu} n_{\mu}}_{-1}+\underbrace{n^{\mu} \nabla_{\alpha} n_{\mu}}_{0}
$$

- Page 63, 3 lines below Eq. (4.22): $b^{2} N$ must be replaced by $b^{3} N$, so that the equation becomes $n^{\mu} \nabla_{\mu} N=\left(x^{2}+y^{2}+z^{2}\right) /\left(b^{3} N\right)$.
- Page 86, Eq. (5.65): two terms β^{k} are mistyped as β^{K}; the equation should be

$$
\mathscr{L}_{\boldsymbol{\beta}} K_{i j}=\beta^{k} \frac{\partial K_{i j}}{\partial x^{k}}+K_{k j} \frac{\partial \beta^{k}}{\partial x^{i}}+K_{i k} \frac{\partial \beta^{k}}{\partial x^{j}} .
$$

- Page 87 , Eq. (5.76): the final β^{k} is mistyped as β^{K}; the equation should be

$$
\mathscr{L}_{\boldsymbol{\beta}} K_{i j}=\beta^{k} \frac{\partial K_{i j}}{\partial x^{k}}+K_{k j} \frac{\partial \beta^{k}}{\partial x^{i}}+K_{i k} \frac{\partial \beta^{k}}{\partial x^{j}}
$$

- Page 129 , Eq. (6.134b): the first factor $1 / \mu_{0}$ should be $1 /\left(2 \mu_{0}\right)$ and the term U_{K} should be replaced by U_{k}, so that the equation becomes

$$
\begin{aligned}
& \mathscr{F}_{i}^{j}:= \sqrt{\gamma}\left\{N\left[P+\frac{1}{2 \mu_{0}}\left(\frac{B_{k} B^{k}}{\Gamma^{2}}+\left(U_{k} B^{k}\right)^{2}\right)\right] \delta^{j}{ }_{i}+\frac{B_{k} B^{k}}{\mu_{0}} V_{i} U^{j}\right. \\
&\left.+\left[(E+P) U_{i}-\frac{U_{k} B^{k}}{\mu_{0}} B_{i}\right] V^{j}-\frac{N}{\mu_{0}}\left[\frac{B_{i}}{\Gamma^{2}}-U_{k} B^{k} U_{i}\right] B^{j}\right\} \\
& 1 \leq i \leq 3
\end{aligned}
$$

- Page 153, 3 lines above Eq. (7.100): the phrase "the connection $\tilde{\boldsymbol{D}}$ is simply $\tilde{\boldsymbol{D}}$ " must be replaced by "the connection $\tilde{\boldsymbol{D}}$ is simply $\overline{\boldsymbol{D}}$ "
- Page 162 , Eq. (8.7): the term β_{i} must be replaced by β^{i}, so that the equation becomes

$$
H=-\int_{\Sigma_{t}^{\operatorname{int}}}\left(N C_{0}-2 \beta^{i} C_{i}\right) \sqrt{\gamma} \mathrm{d}^{3} x-2 \oint_{\mathscr{S}_{t}}\left[N\left(\kappa-\kappa_{0}\right)+\beta^{i}\left(K_{i j}-K \gamma_{i j}\right) s^{j}\right] \sqrt{q} \mathrm{~d}^{2} y .
$$

- Page 165 , Eq. (8.17b): the term $1 / \eta$ must be replaced by $1 / r$, so that the equation becomes

$$
\bar{\Gamma}_{r \theta}^{\theta}=\bar{\Gamma}_{\theta r}^{\theta}=\frac{1}{r} \quad \text { and } \quad \bar{\Gamma}_{\varphi \varphi}^{\theta}=-\cos \theta \sin \theta
$$

- Page 178, unnumbered equation below Eq. (8.61): the index v in ${ }^{4} R^{\mu}{ }_{v}$ is ill placed; the equation should be

$$
\nabla_{v} \nabla^{\mu} k^{v}-\nabla^{\mu} \underbrace{\nabla_{v} k^{v}}_{0}={ }^{4} R^{\mu}{ }_{v} k^{v} .
$$

- Page 184: the grey box delimiting Example 8.7 should terminate just below Eq. (8.80), i.e. the text starting by "Let us now find..." should typed be on a white background.
- Page 187, Eq. (9.2): the indices i and j of $K^{i}{ }_{j}$ must be swapped, so that the equation becomes

$$
D_{j} K_{i}^{j}-D_{i} K=8 \pi p_{i} .
$$

- Page 191, unnumbered equation at the top of the page: the term $\hat{A}^{j l}$ must be replaced by $(L X)^{j l}$, so that the equation becomes

$$
\int_{\Sigma_{0}} \tilde{\gamma}_{i j} C^{i} \tilde{D}_{k} \hat{A}^{j k} \sqrt{\tilde{\gamma}} \mathrm{~d}^{3} x=-\frac{1}{2} \int_{\Sigma_{0}} \tilde{\gamma}_{i j} \tilde{\gamma}_{k l}(\tilde{L} C)^{i k}(L X)^{j l} \sqrt{\tilde{\gamma}} \mathrm{~d}^{3} x .
$$

- Page 193, 3 lines above Section 8.2.4: replace "that it always solvable" by "that it is always solvable".
- Page 203, 2 lines above Eq. (9.75): replace the second occurrence of "(9.66)" by "(8.44)".
- Page 205, 4 lines before the end of Remark 9.4: replace "the thin sandwich system does have" by "the thin sandwich system does not have".
- Page 206, unnumbered equation between Eqs. (9.85) and (9.86): the plus sign in the r.h.s. should be minus, so that the equation should be

$$
\tilde{D}_{i} \tilde{D}^{i} N+2 \tilde{D}_{i} \ln \Psi \tilde{D}^{i} N=\Psi^{-1}\left[\tilde{D}_{i} \tilde{D}^{i}(N \Psi)-N \tilde{D}_{i} \tilde{D}^{i} \Psi\right] .
$$

- Page 215, 5th line: replace "boosted boosted" by "boosted".
- Page 225 , last line: replace $\Sigma_{\partial t}$ by $\Sigma_{\delta t}$.
- Page 233, first line above Eq. (10.23): replace "in the form (10.23)" by "in the form (10.19)".
- Page 237, first line below Eq. (10.33): replace $\Sigma_{t+\partial t}$ by $\Sigma_{t+\delta t}$.
- Page 243 , Eq. (10.56): replace $==$ by $=$.
- Page 244, first line below Eq. (10.59): replace " K is a positive function" by " k is a positive function".
- Page 245, first line of Remark 10.10: replace "where K " by "where k ".

