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Geometry of Killing horizons and applications to BH physics
Plan of the lectures

1 Null hypersurfaces and non-expanding horizons (today)
2 Killing horizons (today)
3 Stationary black holes (tomorrow)
4 Degenerate Killing horizons and their near-horizon geometry

(tomorrow)
5 Exploring the extremal Kerr near-horizon geometry with SageMath (on

Thursday)

Prerequisite
An introductory course on general relativity
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Home page for the lectures

https://relativite.obspm.fr/blackholes/ihp24/

includes
these slides
the lecture notes (draft)
some SageMath notebooks
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Lecture 1: Null hypersurfaces and non-expanding horizons

1 The spacetime framework

2 Basic geometry of null hypersurfaces

3 Non-expanding horizons
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The spacetime framework

Outline

1 The spacetime framework

2 Basic geometry of null hypersurfaces

3 Non-expanding horizons
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The spacetime framework

Framework of the lectures

spacetime = (M , g)

M : n-dimensional smooth manifold (n ≥ 3)
g: Lorentzian metric on M

Smooth manifold:
topological space M that
locally resembles Rn (but
maybe not globally)
=⇒ coordinate charts
=⇒ tangent vectors

Remark: vector connecting two
points p and q defined only for p
and q infinitely close
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The spacetime framework

Metric’s null cone

Vector v ∈ TpM is
spacelike ⇐⇒ g(v,v) > 0

null ⇐⇒ g(v,v) = 0

timelike ⇐⇒ g(v,v) < 0

Additional assumption:
the spacetime (M , g) is time-oriented
=⇒ future and past directions
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The spacetime framework

Lorentzian manifold (M , g)
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The spacetime framework

Einstein’s equation

(M , g) is ruled by general relativity ⇐⇒ g obeys Einstein’s equation:

R− 1

2
R g + Λ g = 8πT

where
R := Ric(g), Ricci tensor: Rαβ = Riem(g)µαµβ
R := gµνRµν , Ricci scalar
Λ cosmological constant
T energy-momentum tensor of matter/fields

In these lectures: Λ = 0.

We shall make clear whether a black hole property relies on Einstein’s
equation or not.
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Basic geometry of null hypersurfaces

Outline

1 The spacetime framework

2 Basic geometry of null hypersurfaces

3 Non-expanding horizons
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Basic geometry of null hypersurfaces

Hypersurfaces in spacetime

A hypersurface of the n-dimensional spacetime (M , g) is an embedded
submanifold of M of dimension n− 1 (codimension 1).

Locally, a hypersurface Σ can be of one of 3 types (n = normal to Σ):

Σ timelike Σ spacelike Σ null
g|Σ Lorentzian g|Σ Riemannian g|Σ degenerate
n spacelike n timelike n null (and tangent to Σ)
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Basic geometry of null hypersurfaces

Null hypersurface as a causal boundary

 

12

For timelike worldlines L
directed towards the future:

null hypersurface = 1-way
membrane
=⇒ eligible for a black hole
boundary...

...and elected! (as a
consequence of the formal
definition of a black hole)

Theorem (Penrose 1968)

Wherever it is smooth, the event horizon of a black hole is a null
hypersurface.
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Basic geometry of null hypersurfaces

Timelike hypersurfaces are not causal boundaries

 

1 2

For timelike worldlines L
directed towards the future:

timelike hypersurface = 2-way
membrane
=⇒ not eligible for a black
hole boundary
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Basic geometry of null hypersurfaces

Spacelike hypersurfaces

1

2

 

For timelike worldlines L
directed towards the future:

spacelike hypersurface =
1-way membrane
=⇒ in the dynamical black
hole context: trapping
horizons = spacelike
hypersurfaces
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Basic geometry of null hypersurfaces

Normal to a null hypersurface

A generic hypersurface H of M can be (locally) defined as a level set (or
isosurface) of some scalar field u : M → R such that du ̸= 0:

H = {p ∈ M , u(p) = 0}

Any vector field ℓ normal to H must be collinear to the gradient of u:

ℓ = −eρ
−→
∇u

where ρ is some scalar field and the minus sign is chosen for convenience.
In term of components with respect to a coordinate system (xα):

ℓα = −eρ∇αu = −eρgαµ∇µu = −eρgαµ∂µu

H null hypersurface ⇐⇒ g(ℓ, ℓ) = 0 ⇐⇒ gµν∂µu ∂νu = 0

Assumption: ℓ is future-directed1

1If necessary, consider u′ := −u instead of u
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Basic geometry of null hypersurfaces

Example 1: null hyperplane in Minkowski spacetime

g = −dt2 + dx2 + dy2 + dz2

u := t− x = 0

∇u = dt− dx

∇αu = (1,−1, 0, 0)

∇αu = (−1,−1, 0, 0)

Choose ρ = 0

=⇒ ℓα = (1, 1, 0, 0)

ℓ = ∂t + ∂x
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Basic geometry of null hypersurfaces

Example 2: future null cone in Minkowski spacetime

g = −dt2 + dx2 + dy2 + dz2

u := t−
√

x2 + y2 + z2 = 0

∇u = dt− x

r
dx− y

r
dy− z

r
dz

r :=
√
x2 + y2 + z2

∇αu =
(
1,−x

r
,−y

r
,−z

r

)
∇αu =

(
−1,−x

r
,−y

r
,−z

r

)
Choose ρ = 0

=⇒ ℓα =
(
1,

x

r
,
y

r
,
z

r

)
ℓ = ∂t +

x

r
∂x +

y

r
∂y +

z

r
∂z
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Basic geometry of null hypersurfaces

Example 3: Schwarzschild horizon
in Eddington-Finkelstein coordinates

g = −
(
1− 2m

r

)
dt2+

4m

r
dtdr+

(
1 +

2m

r

)
dr2+r2dθ2+r2 sin2 θ dφ2

u :=
(
1− r

2m

)
exp

(
r − t

4m

)
= 0

H : u = 0 ⇐⇒ r = 2m

∇u =
1

4m
e(r−t)/(4m)

[
−
(
1− r

2m

)
dt

−
(
1 +

r

2m

)
dr

]
Exercise: compute ℓ with ρ chosen so

that ℓt = 1 and get

ℓ = ∂t +
r − 2m

r + 2m
∂r =⇒ ℓ

H
= ∂t
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Basic geometry of null hypersurfaces

Example 3: Schwarzschild horizon
in Eddington-Finkelstein coordinates

0 2 4 6 8 10 12 14

r/m

-10

-5

0

5

10

15

t/
m

u= − 2u= − 1u= 0

u= 1

u= 2

Hypersurfaces of constant value of u
around the Schwarzschild horizon u = 0
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Basic geometry of null hypersurfaces

Frobenius identity
A fundamental identity obeyed by any normal ℓ to a hypersurface

Starting point: ℓ = −eρ
−→
∇u

=⇒ ℓα = −eρ∇αu

=⇒ ∇αℓβ = −eρ∇αρ∇βu− eρ∇α∇βu

=⇒ ∇αℓβ −∇βℓα = −eρ∇αρ∇βu+ eρ∇βρ∇αu

=⇒ ∇αℓβ −∇βℓα = ∇αρ ℓβ −∇βρ ℓα

In terms of exterior (Cartan) calculus:
dℓ = dρ ∧ ℓ

where
ℓ is the 1-form metric-dual to vector ℓ: ℓ = ℓαdx

α, ℓα = gαµℓ
µ

dℓ is the exterior derivative of ℓ (2-form)
∧ is the exterior product of p-forms
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Basic geometry of null hypersurfaces

Null geodesic generators

Contract Frobenius identity with ℓ:

ℓµ∇µℓα − ℓµ∇αℓµ = ℓµ∇µρ ℓα − ℓµℓµ︸︷︷︸
0

∇αρ

Now ℓµ∇αℓµ = ∇α(ℓ
µℓµ︸︷︷︸
0

)− ℓµ∇αℓ
µ =⇒ ℓµ∇αℓµ = 0

Hence
ℓµ∇µℓα = κ ℓα with κ := ℓµ∇µρ = ∇ℓ ρ

or, by metric duality (index raising):

ℓµ∇µℓ
α = κ ℓα

i.e.
∇ℓ ℓ = κ ℓ
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Basic geometry of null hypersurfaces

Null geodesic generators

∇ℓ ℓ = κ ℓ =⇒ ℓ is a pregeodesic vector, i.e. ∃ rescaling factor α such
that ℓ′ = αℓ is a geodesic vector: ∇ℓ′ ℓ

′ = 0
Exercise: prove it!
=⇒ the field lines of ℓ are (null) geodesics.

κ is called the non-affinity coefficient of the null normal ℓ because
κ = 0 ⇐⇒ λ is an affine parameter

where λ is the parameter along a geodesic field line of ℓ whose derivative
vector is ℓ:

ℓ =
dx

dλ

Any null hypersurface H is ruled by a family of null geodesics, called the
generators of H , and each vector field ℓ normal to H is tangent to
these null geodesics.
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Basic geometry of null hypersurfaces

Examples of null geodesic generators

null hyperplane future null cone Schwarzschild horizon

∇ℓ ℓ = 0 ∇ℓ ℓ = 0 ∇ℓ ℓ = κ ℓ

κ = 0 κ = 0 κ =
1

4m
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Basic geometry of null hypersurfaces

Cross-sections of a null hypersurface

cross-section of the null hypersurface H :
(n− 2)-dimensional submanifold S ⊂ H
such that

1 the null normal ℓ is nowhere tangent to
S

2 each null geodesic generator of H
intersects S at most once

complete cross-section: each null geodesic
generator of H intersects S exactly once

Any cross-section S is spacelike, i.e. all vectors tangent to S are
spacelike.

Proof: a vector tangent to H cannot be timelike, nor null and not normal.
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Basic geometry of null hypersurfaces

Induced metric on a cross-section

Induced metric q on a cross-section S :

∀(u,v) ∈ TpS × TpS , q(u,v) := g(u,v)

S spacelike =⇒ q positive definite =⇒ (S , q) Riemannian manifold

Orthogonal complement to TpS :
q Riemannian =⇒ T⊥

p S timelike 2-plane
s.t.

TpM = TpS ⊕ T⊥
p S

Complement null normal to S : null
vector k s.t k · ℓ = −1 and
T⊥
p S = Span (ℓ,k)
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Basic geometry of null hypersurfaces

Extension of q to a spacetime tensor

Extension to a bilinear form:

q := g + ℓ⊗ k + k ⊗ ℓ ⇐⇒ qαβ := gαβ + ℓαkβ + kαℓβ

∀(u,v) ∈ TpM × TpM , q(u,v) = qS (u∥,v∥)

Orthogonal projector onto S :
−→q := Id + ℓ⊗ k + k ⊗ ℓ ⇐⇒ qαβ := δαβ + ℓα kβ + kα ℓβ

Remark: H being a null hypersurface, there is no orthogonal projector
onto H . Instead, on S , one may introduce the projector Π onto H
along k by

Πα
β = δαβ + kαℓβ

It fulfills Π(k) = 0 and ∀v ∈ TpH , Π(v) = v.
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Basic geometry of null hypersurfaces

Expansion along a null normal

1 Consider a cross-section S
and a null normal ℓ to H

2 ε being a small parameter,
displace the point p by the
vector εℓ to the point pε

3 Do the same for each point
in S , keeping the value of ε
fixed

4 Since ℓ is tangent to H ,
this defines a new
cross-section Sε of H

The expansion along ℓ is defined from the relative change of the area δA
(w.r.t. metric q) of a surface element δS of S around p:

θ(ℓ) := lim
ε→0

1

ε

δAε − δA

δA
= Lℓ ln

√
q = qµν∇µℓν
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Basic geometry of null hypersurfaces

Expansion along a null normal

The expansion θ(ℓ) at a point p ∈ H
depends solely on the null normal ℓ,
not on the choice of the cross-section
S through p.

θ(ℓ) = qµν∇µℓν ⇒ θ(ℓ) = ∇µℓ
µ − κ

Remark: ℓ′ = αℓ =⇒ θ(ℓ′) = αθ(ℓ)
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Basic geometry of null hypersurfaces

Examples of expansions

null hyperplane future null cone Schwarzschild horizon

θ(ℓ) = 0 θ(ℓ) =
2

r
θ(ℓ) = 0
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Basic geometry of null hypersurfaces

Deformation rate

Variation of S ’s metric q when evolved (Lie-dragged) along the null
normal ℓ =⇒ deformation rate of S along ℓ:

Θ :=
1

2
−→q ∗Lℓ q ⇐⇒ Θαβ =

1

2
qµαq

ν
βLℓ qµν

One has Θαβ = qµαq
ν
β∇µℓν , from which

∇αℓβ = Θαβ + ωαℓβ − ℓαk
µ∇µℓβ,

where ω is the 1-form defined by

ωα := −kµ∇νℓµΠ
ν
α = −kµ∇αℓµ − kµkν∇µℓν ℓα ,

Πν
α := δνα + kνℓα being the projector onto H along k introduced above.
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Basic geometry of null hypersurfaces

Shear tensor

The trace-free part of Θ is called the shear tensor of S along ℓ:

σ := Θ− 1

n− 2
θ(ℓ) q ⇐⇒ σαβ = Θαβ − 1

n− 2
θ(ℓ) qαβ

By construction, σµ
µ = 0.

Remark 1: the tensor fields q, Θ and σ are tangent to S is the sense that

∀v ∈ T⊥
p S , q(v, .) = Θ(v, .) = σ(v, .) = 0

Remark 2: upon a change of null normal, the following rescaling holds:

ℓ′ = αℓ =⇒ θ(ℓ′) = αθ(ℓ), Θ′ = αΘ, σ′ = ασ
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Basic geometry of null hypersurfaces

Evolution of the expansion

Null Raychaudhuri equation

∇ℓ θ(ℓ) = κθ(ℓ) −
1

n− 2
θ2(ℓ) − σabσ

ab −R(ℓ, ℓ)

Sketch of proof: start from the Ricci identity (≡ definition of the Riemann tensor
Rγ

δαβ) applied to the vector field ℓ:

(∇α∇β −∇β∇α) ℓ
γ = Rγ

µαβ ℓ
µ

Contract over α and γ to make appear the Ricci tensor R and contract with ℓβ :

ℓν∇µ∇νℓ
µ − ℓν∇ν∇µℓ

µ = Rµνℓ
µℓν

Use ∇νℓ
µ = Θµ

ν − ωνℓ
µ + ℓνk

σ∇σℓ
µ and ∇µℓ

µ = θ(ℓ) + κ, then Θµ
νℓ

ν = 0,

ℓν∇µΘ
µ
ν = −Θµ

ν∇µℓ
ν = −ΘµνΘ

µν = −σabσ
ab − 1

n− 2
θ2(ℓ), ωνℓ

ν = κ and

ℓνℓµ∇µων = ℓµ∇µκ− κ2 to get the result.
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Basic geometry of null hypersurfaces

Evolution of the expansion

Null Raychaudhuri equation for general relativity
If the Einstein equation holds:

∇ℓ θ(ℓ) = κθ(ℓ) −
1

n− 2
θ2(ℓ) − σabσ

ab − 8πT (ℓ, ℓ)
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Non-expanding horizons

Outline

1 The spacetime framework

2 Basic geometry of null hypersurfaces

3 Non-expanding horizons
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Non-expanding horizons

Distinguishing a black hole horizon from a generic null
hypersurface

A naive definition of a black hole:

A black hole is a localized region of spacetime from which neither massive
particles nor massless ones (photons) can escape.

no-escape facet =⇒ boundary = null hypersurface
But we don’t want the interior of a future null cone in Minkowski
spacetime to be called a black hole...

localized facet: for equilibrium configurations, can be enforced by
cross-sections = compact surfaces with constant area, i.e. vanishing
expansion
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Non-expanding horizons

Non-expanding horizons

Definition
A non-expanding horizon (NEH) is a null hypersurface H whose
complete cross-sections S are compact manifolds (without boundary) and
such that the expansion along any null normal ℓ vanishes identically:

θ(ℓ) = 0

Remark 1: definition independent of ℓ, due to ℓ′ = αℓ =⇒ θ(ℓ′) = αθ(ℓ)
Remark 2: assuming that all cross-sections have the same topology, H has
the “cylinder” topology: H ≃ R× S .

Remark 3: NEH concept introduced by P. Há́ȷiček in 1973 [Com. Math. Phys.

34, 37] under the name perfect horizon; the term non-expanding horizon has
been coined by A. Ashtekar, S. Fairhurst & B. Krishnan in 2000 [PRD 62,

104025].
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Non-expanding horizons

(Counter-)examples of non-expanding horizons

null hyperplane future null cone Schwarzschild horizon

non-compact nonzero expansion OK
cross-sections
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Non-expanding horizons

Connection with marginally trapped surfaces
Definition of a trapped surface (1/2)

S : closed (compact without boundary) spacelike (n− 2)-dimensional
surface embedded in spacetime (M , g)

Being spacelike, S lies outside the
light cone =⇒ ∃ two future-directed
null directions orthogonal to S :
ℓ = outgoing, expansion θ(ℓ)
k = ingoing, expansion θ(k)

In Minkowski spacetime:
θ(k) < 0 and θ(ℓ) > 0

S is trapped ⇐⇒ θ(k) < 0 and θ(ℓ) < 0 [Penrose 1965]

S is marginally trapped ⇐⇒ θ(k) < 0 and θ(ℓ) = 0
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Non-expanding horizons

Connection with marginally trapped surfaces
Definition of a trapped surface (2/2)

untrapped surface trapped surface

θ(k) < 0 and θ(ℓ) > 0 θ(k) < 0 and θ(ℓ) < 0

No trapped surface in Minkowski spacetime
=⇒ trapped surface = local concept characterizing strong gravity
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Non-expanding horizons

Connection with marginally trapped surfaces

Generically, one has θ(k) < 0 along cross-sections of a non-expanding
horizon. Hence:

A non-expanding horizon is (generically) a null hypersurface foliated by
marginally trapped surfaces.

Example: Schwarzschild horizon

θ(k) = − 1

m
and θ(ℓ) = 0
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Non-expanding horizons

Area of a non-expanding horizon

Each cross-section S of H is a
spacelike closed surface.

The area of S is given by the
positive definite metric q induced by
g on S :

A =

∫
S

√
q dy1 · · · dyn−2

where ya = (y1, . . . , yn−2) are
coordinates on S and q := det(qab)

Since θ(ℓ) = 0, we have:

On a non-expanding horizon, the area A is independent of the choice of the
cross-section S =⇒ area of H
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Non-expanding horizons

Example: area of the Schwarzschild horizon

Spacetime metric:

g = −
(
1− 2m

r

)
dt2+

4m

r
dtdr+

(
1 +

2m

r

)
dr2+r2dθ2+r2 sin2 θ dφ2

H : r = 2m; coord: (t, θ, φ)

S : r = 2m and t = t0; coord: ya = (θ, φ)

=⇒ induced metric on S :

qab dy
adyb = (2m)2

(
dθ2 + sin2 θ dφ2

)
=⇒ q := det(qab) = (2m)4 sin2 θ

=⇒ A =

∫
S
(2m)2 sin θ dθdφ

=⇒ A = 16πm2
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Non-expanding horizons
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Non-expanding horizons

Vanishing of the deformation rate tensor (1/2)
Null Raychaudhuri equation + θ(ℓ) = 0 =⇒ σabσ

ab +R(ℓ, ℓ) = 0

q Riemannian =⇒ σabσ
ab =

n−2∑
a=1

n−2∑
b=1

(σab)
2 in a q-orthonormal frame

=⇒ σabσ
ab ≥ 0

R(ℓ, ℓ) ≥ 0 as well if one assumes the null convergence condition:
R(ℓ, ℓ) ≥ 0 for any null vector ℓ

For general relativity, the null convergence condition is equivalent to the
null energy condition:

T (ℓ, ℓ) ≥ 0 for any null vector ℓ

NB: this is a very mild assumption, which is satisfied by

vacuum (T = 0), any electromagnetic field, any massless scalar field, dark
energy (T = −(Λ/8π) g)

any “standard” matter that fulfills the weak energy condition: T (u,u) ≥ 0
for any u timelike (positivity of the energy)
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Non-expanding horizons

Vanishing of the deformation rate tensor (2/2)

If the null convergence condition is fulfilled, one has necessarily both
R(ℓ, ℓ) = 0 and σabσ

ab = 0. Since q is Riemannian, the later implies

σ = 0. It follows that Θ = σ +
1

n− 2
θ(ℓ) q = 0. Hence

Invariance of the cross-section metric along the null generators of a NEH
Provided that the null convergence condition holds — which occurs in
general relativity if the null energy condition holds —, the deformation rate
of any cross-section S of a non-expanding horizon H along any null
normal ℓ is identically zero:

Θ :=
1

2
−→q ∗Lℓ q = 0

In other words, the whole metric q (and not only the area form, as a mere
θ(ℓ) = 0 would suggest) is invariant along the geodesic generators of H .
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Non-expanding horizons

Intrinsic affine connection on a NEH

Intrinsic affine connection H∇
Let H be a NEH and X(H ) be the space of vector fields on H . If the
null convergence condition holds, the operator

H∇ : X(H )× X(H ) −→ X(H )

(u,v) 7−→ ∇u v,

is well-defined (i.e. H∇uv belongs to X(H )). Moreover, H∇ fulfills all
the properties of an affine connection, since ∇ does.

Proof: ℓµu
ν∇νv

µ = uν∇ν(ℓµv
µ︸︷︷︸

0

)− vµuν∇νℓµ

= −Θνµ︸︷︷︸
0

vµuν − ωνu
ν ℓµv

µ︸︷︷︸
0

+vµ uνℓν︸︷︷︸
0

kσ∇σℓµ = 0

Hence ∇u v is tangent to H .
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Non-expanding horizons

A NEH is a totally geodesic null hypersurface

As a consequence of the identity H∇uv = ∇uv for any pair (u,v) of
vector fields tangent to H :

(H ,H∇) is a totally geodesic submanifold of (M , g), i.e. any geodesic
of (H ,H∇) is also a geodesic of (M , g).
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Non-expanding horizons

Connection 1-form

Horizon-intrinsic derivative of the null normal to a NEH
If the null convergence condition holds, the derivative of the null normal ℓ
to a NEH H with respect to the intrinsic affine connection H∇ takes the
form

H∇ℓ = ℓ⊗ Hω

where the connection 1-form Hω is the tensor field on H that is the
restriction to tangent vectors to H of the 1-form ω := −k ·∇Πℓ. In other
words, Hω := ι∗ω (pullback of ω by the inclusion map ι : H → M ).

Proof: H∇ℓ is a tensor field of type (1, 1) on H , whose action on a pair (1-form
a on H , vector field u on H ) is H∇ℓ(a,u) = ⟨a,H∇uℓ⟩. Introducing
ā = a ◦Π as a 1-form on M , we get ⟨a,H∇uℓ⟩ = ⟨ā,H∇uℓ⟩. Hence

H∇ℓ(a,u) = ⟨ā,∇uℓ⟩ = āµu
ν∇νℓ

µ = āµu
ν
(
Θµ

ν︸︷︷︸
0

+ωνℓ
µ − ℓνk

ρ∇ρℓ
µ
)

= āµℓ
µ ωνu

ν − ℓνu
ν︸︷︷︸

0

āµk
ρ∇ρℓ

µ = ⟨ā, ℓ⟩ ⟨ω,u⟩ = ⟨a, ℓ⟩ ⟨Hω,u⟩
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