Introduction to black hole physics 3. The Kerr black hole

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot Université Paris Sciences et Lettres 92190 Meudon, France

http://luth.obspm.fr/~luthier/gourgoulhon/leshouches18/

École de Physique des Houches 5 July 2018

https://luth.obspm.fr/~luthier/gourgoulhon/ leshouches18/

э

Lecture 3: The Kerr black hole

- The Kerr solution in Boyer-Lindquist coordinates
- 2 Kerr coordinates
- 3 Horizons in the Kerr spacetime
 - 4 Penrose process
- 5 Global quantities
- 6 The no-hair theorem

Outline

1 The Kerr solution in Boyer-Lindquist coordinates

- 2) Kerr coordinates
- 3 Horizons in the Kerr spacetime
- 4 Penrose process
- 5 Global quantities
- 6 The no-hair theorem

The Kerr solution (1963)

Spacetime manifold

$$\begin{split} \mathscr{M} &:= \mathbb{R}^2 \times \mathbb{S}^2 \setminus \mathscr{R} \\ \text{with } \mathscr{R} &:= \Big\{ p \in \mathbb{R}^2 \times \mathbb{S}^2, \quad r(p) = 0 \text{ and } \theta(p) = \frac{\pi}{2} \Big\}, \\ &(t,r) \text{ spanning } \mathbb{R}^2 \text{ and } (\theta, \varphi) \text{ spanning } \mathbb{S}^2 \end{split}$$

Boyer-Lindquist (BL) coordinates (1967)

 (t, r, θ, φ) with $t \in \mathbb{R}$, $r \in \mathbb{R}$, $\theta \in (0, \pi)$ and $\varphi \in (0, 2\pi)$

3

The Kerr solution (1963)

Spacetime metric

2 parameters (m, a) such that 0 < a < m

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

where $\rho^{2} := r^{2} + a^{2}\cos^{2}\theta$ and $\Delta := r^{2} - 2mr + a^{2}$

Some metric components diverge when

• $ho=0\iff r=0$ and $heta=\pi/2$ (set \mathscr{R} , excluded from \mathscr{M})

• $\Delta = 0 \iff r = r_+ := m + \sqrt{m^2 - a^2}$ or $r = r_- := m - \sqrt{m^2 - a^2}$

Define \mathscr{H} : hypersurface $r = r_+$, \mathscr{H}_{in} : hypersurface $r = r_-$

Section of constant Boyer-Lindquist time coordinate

Éric Gourgoulhon

Basic properties of Kerr metric (1/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

 g is a solution of the vacuum Einstein equation: Ric(g) = 0
 See this SageMath notebook for an explicit check: http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/ blob/master/sage/Kerr_solution.ipynb

Basic properties of Kerr metric (2/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

•
$$r \to \pm \infty \implies \rho^2 \sim r^2, \ \rho^2 / \Delta \sim (1 - 2m/r)^{-1},$$

• $4amr/\rho^2 \, dt \, d\varphi \sim 4am/r^2 \, dt \, rd\varphi$
 $\implies ds^2 \sim -(1 - 2m/r) \, dt^2 + (1 - 2m/r)^{-1} \, dr^2$
 $+r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right) + O\left(r^{-2}\right)$

 $\implies \mbox{ Schwarzschild metric of mass }m\mbox{ for }r>0$ Schwarzschild metric of (negative!) mass m'=-m for r<0

9 / 38

Basic properties of Kerr metric (3/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

• $\partial g_{\alpha\beta}/\partial t = 0 \Longrightarrow [\boldsymbol{\xi} := \partial_t]$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) < 0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathcal{M}, \boldsymbol{g})$ is pseudostationary

Basic properties of Kerr metric (3/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

- $\partial g_{\alpha\beta}/\partial t = 0 \Longrightarrow [\boldsymbol{\xi} := \partial_t]$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) < 0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathcal{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0$, $g_{t\phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t = \text{const} \Longrightarrow (\mathcal{M}, \boldsymbol{g})$ is *not* static

Basic properties of Kerr metric (3/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

- $\partial g_{\alpha\beta}/\partial t = 0 \Longrightarrow [\boldsymbol{\xi} := \partial_t]$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) < 0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathcal{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0$, $g_{t\phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t = \text{const} \Longrightarrow (\mathcal{M}, \boldsymbol{g})$ is *not* static
- $\partial g_{\alpha\beta}/\partial \varphi = 0 \implies [\eta := \partial_{\varphi}]$ is a Killing vector; since η has closed field lines, the isometry group generated by it is $SO(2) \implies (\mathcal{M}, g)$ is axisymmetric

• • = • • = •

10 / 38

Basic properties of Kerr metric (3/3)

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) dt^{2} - \frac{4amr\sin^{2}\theta}{\rho^{2}} dt d\varphi + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\varphi^{2},$$

- $\partial g_{\alpha\beta}/\partial t = 0 \implies [\boldsymbol{\xi} := \partial_t]$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) < 0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathcal{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0$, $g_{t\phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t = \text{const} \Longrightarrow (\mathcal{M}, \boldsymbol{g})$ is *not* static
- $\partial g_{\alpha\beta}/\partial \varphi = 0 \implies \eta := \partial_{\varphi}$ is a Killing vector; since η has closed field lines, the isometry group generated by it is $SO(2) \implies (\mathcal{M}, g)$ is axisymmetric
- when a = 0, g reduces to Schwarzschild metric (then the region $r \le 0$ is excluded from the spacetime manifold)

Éric Gourgoulhon

Ergoregion

Scalar square of the pseudostationary Killing vector $\boldsymbol{\xi} = \boldsymbol{\partial}_t$: $g(\xi, \xi) = g_{tt} = -1 + \frac{2mr}{r^2 + a^2 \cos^2 \theta}$

 $\boldsymbol{\xi}$ timelike $\iff r < r_{\mathscr{E}^{-}}(\theta)$ or $r > r_{\mathscr{E}^{+}}(\theta)$

 $r_{\mathscr{E}^{\pm}}(\theta) := m \pm \sqrt{m^2 - a^2 \cos^2 \theta}$

 $0 < r_{\ell}(\theta) < r_{-} < m < r_{+} < r_{\ell}(\theta) < 2m$

3

Ergoregion

Scalar square of the pseudostationary Killing vector $\boldsymbol{\xi} = \boldsymbol{\partial}_t$: $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) = g_{tt} = -1 + \frac{2mr}{r^2 + a^2 \cos^2 \theta}$

 $\pmb{\xi} \text{ timelike } \iff \quad r < r_{\mathscr{E}^-}(\theta) \text{ or } r > r_{\mathscr{E}^+}(\theta)$

$$r_{\mathscr{E}^{\pm}}(\theta) := m \pm \sqrt{m^2 - a^2 \cos^2 \theta}$$

$$0 \leq r_{\mathscr{E}^{-}}(\theta) \leq r_{-} \leq m \leq r_{+} \leq r_{\mathscr{E}^{+}}(\theta) \leq 2m$$

Ergoregion: part \mathscr{G} of \mathscr{M} where $\boldsymbol{\xi}$ is spacelike **Ergosphere:** boundary \mathscr{E} of the ergoregion: $r = r_{\mathscr{E}^{\pm}}(\theta)$

 \mathscr{G} encompasses all $\mathscr{M}_{\mathrm{II}}$, the part of \mathscr{M}_{I} where $r < r_{\mathscr{E}^+}(\theta)$ and the part of $\mathscr{M}_{\mathrm{III}}$ where $r > r_{\mathscr{E}^-}(\theta)$

 $\begin{array}{l} \textit{Remark: at the Schwarzschild limit, } a = 0 \Longrightarrow r_{\mathscr{E}^+}(\theta) = 2m \\ \Longrightarrow \mathscr{G} = \text{black hole region} \end{array}$

Ergoregion

Meridional slice $t = t_0$, $\phi \in \{0, \pi\}$ viewed in O'Neill coordinates grey: ergoregion; yellow: Carter time machine; red: ring singularity

Éric Gourgoulhon

Outline

The Kerr solution in Boyer-Lindquist coordinates

2 Kerr coordinates

- 3 Horizons in the Kerr spacetime
- 4 Penrose process
- 5 Global quantities
- 6 The no-hair theorem

Kerr coordinates

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of) Kerr coordinates
$$(\tilde{t}, r, \theta, \tilde{\varphi})$$
 by

$$\begin{cases}
d\tilde{t} &= dt + \frac{2mr}{\Delta} dr \\
d\tilde{\varphi} &= d\varphi + \frac{a}{\Delta} dr \\
\implies \begin{cases}
\tilde{t} &= t + \frac{m}{\sqrt{m^2 - a^2}} \left(r_+ \ln \left| \frac{r - r_+}{2m} \right| - r_- \ln \left| \frac{r - r_-}{2m} \right| \right) \\
\tilde{\varphi} &= \varphi + \frac{a}{2\sqrt{m^2 - a^2}} \ln \left| \frac{r - r_+}{r - r_-} \right|
\end{cases}$$

글 🕨 🛛 글

Kerr coordinates

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of) Kerr coordinates
$$(\tilde{t}, r, \theta, \tilde{\varphi})$$
 by

$$\begin{cases}
d\tilde{t} = dt + \frac{2mr}{\Delta} dr \\
d\tilde{\varphi} = d\varphi + \frac{a}{\Delta} dr \\
\Rightarrow \begin{cases}
\tilde{t} = t + \frac{m}{\sqrt{m^2 - a^2}} \left(r_+ \ln \left| \frac{r - r_+}{2m} \right| - r_- \ln \left| \frac{r - r_-}{2m} \right| \right) \\
\tilde{\varphi} = \varphi + \frac{a}{2\sqrt{m^2 - a^2}} \ln \left| \frac{r - r_+}{r - r_-} \right|
\end{cases}$$

Reduce to ingoing Eddington-Finkelstein coordinates when $a \to 0 \ (r_+ \to 2m, r_- \to 0)$: $\begin{cases}
\tilde{t} = t + 2m \ln \left| \frac{r}{2m} - 1 \right| \\
\tilde{\varphi} = \varphi
\end{cases}$

Kerr coordinates

Spacetime metric in Kerr coordinates

$$ds^{2} = -\left(1 - \frac{2mr}{\rho^{2}}\right) d\tilde{t}^{2} + \frac{4mr}{\rho^{2}} d\tilde{t} dr - \frac{4amr\sin^{2}\theta}{\rho^{2}} d\tilde{t} d\tilde{\varphi} + \left(1 + \frac{2mr}{\rho^{2}}\right) dr^{2} - 2a\left(1 + \frac{2mr}{\rho^{2}}\right) \sin^{2}\theta dr d\tilde{\varphi} + \rho^{2}d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}mr\sin^{2}\theta}{\rho^{2}}\right) \sin^{2}\theta d\tilde{\varphi}^{2}.$$

Note

- contrary to Boyer-Lindquist ones, the metric components are regular where $\Delta = 0$, i.e. at $r = r_+$ (\mathscr{H}) and $r = r_-$ (\mathscr{H}_{in})
- the two Killing vectors $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ coincide with the coordinate vectors corresponding to \tilde{t} and $\tilde{\varphi}$: $\boldsymbol{\xi} = \boldsymbol{\partial}_{\tilde{t}}$ and $\boldsymbol{\eta} = \boldsymbol{\partial}_{\tilde{\varphi}}$

3

Outline

- The Kerr solution in Boyer-Lindquist coordinates
- 2) Kerr coordinates
- 3 Horizons in the Kerr spacetime
 - 4 Penrose process
 - 6 Global quantities
 - 6 The no-hair theorem

Constant-r hypersurfaces

A normal to any r = const hypersurface is $\boldsymbol{n} := \rho^2 \vec{\nabla} r$, where $\vec{\nabla} r$ is the gradient of r: $\nabla^{\alpha} r = g^{\alpha \mu} \partial_{\mu} r = g^{\alpha r} = \left(\frac{2mr}{\rho^2}, \frac{\Delta}{\rho^2}, 0, \frac{a}{\rho^2}\right)$ $\implies \boldsymbol{n} = 2mr \partial_{\tilde{t}} + \Delta \partial_{\tilde{r}} + a \partial_{\tilde{\varphi}}$

One has

 $g(n,n) = g_{\mu\nu}n^{\mu}n^{\nu} = g_{\mu\nu}\rho^2 \nabla^{\mu}r \, n^{\nu} = \rho^2 \nabla_{\nu}r \, n^{\nu} = \rho^2 \partial_{\nu}r \, n^{\nu} = \rho^2 n^r$ hence

 $\boldsymbol{g}(\boldsymbol{n},\boldsymbol{n})=
ho^2\Delta$

Constant-r hypersurfaces

A normal to any r = const hypersurface is $\boldsymbol{n} := \rho^2 \vec{\nabla} r$, where $\vec{\nabla} r$ is the gradient of r: $\nabla^{\alpha} r = g^{\alpha \mu} \partial_{\mu} r = g^{\alpha r} = \left(\frac{2mr}{\rho^2}, \frac{\Delta}{\rho^2}, 0, \frac{a}{\rho^2}\right)$ $\implies \boldsymbol{n} = 2mr \partial_{\tilde{t}} + \Delta \partial_{\tilde{r}} + a \partial_{\tilde{\varphi}}$

One has

 $g(n,n) = g_{\mu\nu}n^{\mu}n^{\nu} = g_{\mu\nu}\rho^2 \nabla^{\mu}r \, n^{\nu} = \rho^2 \nabla_{\nu}r \, n^{\nu} = \rho^2 \partial_{\nu}r \, n^{\nu} = \rho^2 n^r$ hence

 $\boldsymbol{g}(\boldsymbol{n},\boldsymbol{n})=
ho^2\Delta$

Given that $\Delta = (r - r_{-})(r - r_{+})$, we conclude:

- The hypersurfaces r = const are timelike in \mathcal{M}_{I} and \mathcal{M}_{III}
- The hypersurfaces r = const are spacelike in \mathcal{M}_{II}
- \mathscr{H} (where $r = r_+$) and $\mathscr{H}_{\mathrm{in}}$ (where $r = r_-$) are null hypersurfaces

Killing horizons

The (null) normals to the null hypersurfaces \mathcal{H} and \mathcal{H}_{in} are $\boldsymbol{n} = \underbrace{2mr}_{2mr_{\pm}} \underbrace{\partial_{\tilde{t}}}_{\boldsymbol{\xi}} + \underbrace{\Delta}_{0} \partial_{\tilde{r}} + a \underbrace{\partial_{\tilde{\varphi}}}_{\boldsymbol{n}} = 2mr_{\pm}\boldsymbol{\xi} + a \boldsymbol{\eta}$ On \mathscr{H} , let us consider the rescaled null normal $\chi := (2mr_+)^{-1}n$: $\boldsymbol{\chi} = \boldsymbol{\xi} + \Omega_H \boldsymbol{\eta}$ with

$$\Omega_H := \frac{a}{2mr_+} = \frac{a}{r_+^2 + a^2} = \frac{a}{2m\left(m + \sqrt{m^2 - a^2}\right)}$$

э

Killing horizons

The (null) normals to the null hypersurfaces \mathscr{H} and \mathscr{H}_{in} are $\boldsymbol{n} = \underbrace{2mr}_{2mr_{\pm}} \underbrace{\boldsymbol{\partial}_{\tilde{t}}}_{\boldsymbol{\xi}} + \underbrace{\boldsymbol{\Delta}}_{0} \boldsymbol{\partial}_{\tilde{r}} + a \underbrace{\boldsymbol{\partial}_{\tilde{\varphi}}}_{\boldsymbol{\eta}} = 2mr_{\pm}\boldsymbol{\xi} + a \boldsymbol{\eta}$ On \mathcal{H} , let us consider the rescaled null normal $\chi := (2mr_+)^{-1}n$: $\boldsymbol{\chi} = \boldsymbol{\xi} + \Omega_H \, \boldsymbol{\eta}$ with $\Omega_H := \frac{a}{2mr_+} = \frac{a}{r_+^2 + a^2} = \frac{a}{2m\left(m + \sqrt{m^2 - a^2}\right)}$ $\chi =$ linear combination with constant coefficients of the Killing vectors ξ and $\eta \implies \chi$ is a Killing vector. Hence

The null hypersurface ${\mathscr H}$ defined by $r=r_+$ is a Killing horizon

Similarly

The null hypersurface $\mathscr{H}_{\mathrm{in}}$ defined by $r=r_-$ is a Killing horizon

Killing horizon \mathscr{H}

Null normal to $\mathscr{H}: \chi = \boldsymbol{\xi} + \Omega_H \eta$ (on the picture $\boldsymbol{\ell} \propto \boldsymbol{\chi}$) $\implies \Omega_H \sim$ "angular velocity" of \mathscr{H}

 \implies rigid rotation (Ω_H independent of θ)

NB: since \mathscr{H} is inside the ergoregion, $\boldsymbol{\xi}$ is spacelike on \mathscr{H}

Two views of the horizon \mathscr{H}

null geodesic generators drawn vertically field lines of Killing vector $\boldsymbol{\xi}$ drawn vertically

Éric Gourgoulhon

Black hole physics 3

Les Houches, 5 July 2018

≣ ୬९९ 8 20/38

The Killing horizon \mathscr{H} is an event horizon

${\mathscr H}$ is a black hole event horizon

Éric Gourgoulhon

Black hole physics 3

Les Houches, 5 July 2018

21 / 38

What happens for $a \ge m$?

$$\Delta := r^2 - 2mr + a^2$$

a = m: extremal Kerr black hole

 $\begin{array}{l} a=m \iff \Delta=(r-m)^2 \\ \Leftrightarrow \text{ double root: } r_+=r_-=m \iff \mathscr{H} \text{ and } \mathscr{H}_{\mathrm{in}} \text{ coincide} \end{array}$

a > m: naked singularity

$$a > m \iff \Delta > 0$$

 $\iff g(n, n) = \rho^2 \Delta > 0 \iff$ all hypersurfaces $r = \text{const}$ are timelike
 \iff any of them can be crossed in the direction of increasing r
 \iff no horizon \iff no black hole
 \iff the curvature singularity at $\rho^2 = 0$ is naked

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Outline

- The Kerr solution in Boyer-Lindquist coordinates
- 2) Kerr coordinates
- 3 Horizons in the Kerr spacetime
 - Penrose process
- 6 Global quantities
- 6 The no-hair theorem

Particle \mathscr{P} (4-momentum p) in free fall from infinity into the ergoregion \mathscr{G} . At point $A \in \mathscr{G}$, \mathscr{P} splits (or decays) into

- particle \mathscr{P}' (4-momentum p'), which leaves to infinity
- particle \mathscr{P}'' (4-momentum p''), which falls into the black hole

Energy gain: $\Delta E = E_{out} - E_{in}$ with $E_{in} = -g(\boldsymbol{\xi}, \boldsymbol{p})|_{\infty}$ and $E_{out} = -g(\boldsymbol{\xi}, \boldsymbol{p'})|_{\infty}$ since at infinity, $\boldsymbol{\xi} = \boldsymbol{\partial}_t$ is the 4-velocity of the inertial observer at rest with respect to the black hole.

24 / 38

Recall 1: measured energy and 3-momentum

Observer \mathcal{O} of 4-velocity $u_{\mathcal{O}}$ Particle \mathscr{P} (massive or not) of 4-momentum p

Energy of \mathscr{P} measured by \mathscr{O}

$$E = -\boldsymbol{g}(\boldsymbol{u}_{\mathscr{O}}, \boldsymbol{p}) = -\langle \underline{\boldsymbol{p}}, \boldsymbol{u}_{\mathscr{O}} \rangle$$

$$= -g_{\mu\nu}u^{\mu}_{\mathscr{O}}p^{\nu} = -p_{\mu}u^{\mu}_{\mathscr{O}}$$

3-momentum of \mathscr{P} measured by \mathscr{O}

 $P = p - E u_{\mathscr{O}}$

Orthogonal decomposition of p w.r.t. $u_{\mathcal{O}}$:

 $\boldsymbol{p} = E \boldsymbol{u}_{\mathscr{O}} + \boldsymbol{P}$, $\boldsymbol{g}(\boldsymbol{u}_{\mathscr{O}}, \boldsymbol{P}) = 0$

3

25 / 38

Recall 2: conserved quantity along a geodesic

Geodesic Noether's theorem

Assume

- (\mathscr{M},g) is a spacetime endowed with a 1-parameter symmetry group, generated by the Killing vector $\pmb{\xi}$
- \mathscr{L} is geodesic of (\mathscr{M}, g) with tangent vector field p: $\nabla_p p = 0$

Then the scalar product $g(\xi, p)$ is constant along \mathscr{L} .

Recall 2: conserved quantity along a geodesic

Geodesic Noether's theorem

Assume

- (\mathscr{M}, g) is a spacetime endowed with a 1-parameter symmetry group, generated by the Killing vector $\pmb{\xi}$
- \mathscr{L} is geodesic of (\mathscr{M}, g) with tangent vector field p: $\nabla_p p = 0$

Then the scalar product $g(\boldsymbol{\xi}, \boldsymbol{p})$ is constant along \mathscr{L} .

Proof:

$$\nabla_{\boldsymbol{p}} \left(\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p}) \right) = p^{\sigma} \nabla_{\sigma} (g_{\mu\nu} \xi^{\mu} p^{\nu}) = p^{\sigma} \nabla_{\sigma} (\xi_{\nu} p^{\nu}) = \nabla_{\sigma} \xi_{\nu} p^{\sigma} p^{\nu} + \xi_{\nu} p^{\sigma} \nabla_{\sigma} p^{\nu} \\ = \frac{1}{2} \left(\underbrace{\nabla_{\sigma} \xi_{\nu} + \nabla_{\nu} \xi_{\sigma}}_{0} \right) p^{\sigma} p^{\nu} + \xi_{\nu} \underbrace{p^{\sigma} \nabla_{\sigma} p^{\nu}}_{0} = 0$$

Penrose process

$$\Delta E = - \left. \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p'}) \right|_{\infty} + \left. \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p}) \right|_{\infty}$$

Geodesic Noether's theorem:

 $\Delta E = -g(\xi, p')|_A + g(\xi, p)|_A$

 $= g(\boldsymbol{\xi}, \boldsymbol{p} - \boldsymbol{p'})|_A$

э

$$\Delta E = - \left. \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p'}) \right|_{\infty} + \left. \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p}) \right|_{\infty}$$

Geodesic Noether's theorem:

 $\Delta E = -\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p'})|_A + \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})|_A$

 $= g(\boldsymbol{\xi}, \boldsymbol{p} - \boldsymbol{p'})|_{A}$ Conservation of energy-momentum at event A: $\boldsymbol{p}|_{A} = \boldsymbol{p'}|_{A} + \boldsymbol{p''}|_{A}$

 $\implies \boldsymbol{p}|_{A} - \boldsymbol{p'}|_{A} = \boldsymbol{p''}|_{A}$ $\implies \Delta E = \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p''})|_{A}$

Now

- p'' is a future-directed timelike or null vector
- ξ is a spacelike vector in the ergoregion
- \implies one may choose some trajectory so that $\left. \boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p}'') \right|_A > 0$

 $\implies \Delta E > 0$, i.e. energy is extracted from the rotating black hole!

Penrose process at work

Jet emitted by the nucleus of the giant elliptic galaxy M87, at the centre of Virgo cluster [HST] $M_{\rm BH} = 3 \times 10^9 \, M_{\odot}$ $V_{\rm jet} \simeq 0.99 \, c$

Éric Gourgoulhon

28 / 38

Outline

- 1 The Kerr solution in Boyer-Lindquist coordinates
- 2 Kerr coordinates
- 3 Horizons in the Kerr spacetime
- Penrose process
- 5 Global quantities
 - 6 The no-hair theorem

Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

$$M = -\frac{1}{8\pi} \int_{\mathscr{S}} \nabla^{\mu} \xi^{\nu} \,\epsilon_{\mu\nu\alpha\beta}$$

- ullet \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- $\boldsymbol{\xi}$: stationary Killing vector, normalized to $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) = -1$ at infinity
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test particle in far circular orbit around the black hole (*Kepler's third law*)

Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

$$M = -\frac{1}{8\pi} \int_{\mathscr{S}} \nabla^{\mu} \xi^{\nu} \,\epsilon_{\mu\nu\alpha\beta}$$

- ullet \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- $\boldsymbol{\xi}$: stationary Killing vector, normalized to $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi}) = -1$ at infinity
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test particle in far circular orbit around the black hole (*Kepler's third law*) For a Kerr spacetime of parameters (m, a):

M = m

Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

$$J = \frac{1}{16\pi} \int_{\mathscr{S}} \nabla^{\mu} \eta^{\nu} \, \epsilon_{\mu\nu\alpha\beta}$$

- $\bullet \ \mathscr{S}$: any closed spacelike 2-surface located in the vacuum region
- η : axisymmetric Killing vector
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: *J* measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*)

Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

$$J = \frac{1}{16\pi} \int_{\mathscr{S}} \nabla^{\mu} \eta^{\nu} \, \epsilon_{\mu\nu\alpha\beta}$$

- ullet \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- η : axisymmetric Killing vector
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: J measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*) For a Kerr spacetime of parameters (m, a):

$$J = am$$

Black hole area

As a non-expanding horizon, \mathcal{H} has a well-defined (cross-section independent) area A:

$$A = \int_{\mathscr{S}} \sqrt{q} \,\mathrm{d}\theta \,\mathrm{d}\tilde{\varphi}$$

- \mathscr{S} : cross-section defined in terms of Kerr coordinates by $\begin{cases} t = t_0 \\ r = r \end{cases}$
 - \implies coordinates spanning \mathscr{S} : $y^a = (\theta, \tilde{\varphi})$
- q := det(q_{ab}), with q_{ab} components of the Riemannian metric q induced on S by the spacetime metric g

Black hole area

Evaluating q: set $d\tilde{t} = 0$, dr = 0, and $r = r_+$ in the expression of g in terms of the Kerr coordinates:

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -\left(1 - \frac{2mr}{\rho^2}\right) d\tilde{t}^2 + \frac{4mr}{\rho^2} d\tilde{t} dr - \frac{4amr\sin^2\theta}{\rho^2} d\tilde{t} d\tilde{\varphi} + \left(1 + \frac{2mr}{\rho^2}\right) dr^2 - 2a\left(1 + \frac{2mr}{\rho^2}\right) \sin^2\theta dr d\tilde{\varphi} + \rho^2 d\theta^2 + \left(r^2 + a^2 + \frac{2a^2mr\sin^2\theta}{\rho^2}\right) \sin^2\theta d\tilde{\varphi}^2.$$

and get

$$q_{ab} \, \mathrm{d}y^a \mathrm{d}y^b = (r_+^2 + a^2 \cos^2 \theta) \, \mathrm{d}\theta^2 + \left(r_+^2 + a^2 + \frac{2a^2mr_+ \sin^2 \theta}{r_+^2 + a^2 \cos^2 \theta}\right) \sin^2 \theta \, \mathrm{d}\tilde{\varphi}^2$$

Éric Gourgoulhon

Black hole area

 r_{+} is a zero of $\Delta := r^{2} - 2mr + a^{2} \Longrightarrow 2mr_{+} = r_{+}^{2} + a^{2}$ $\implies q_{ab}$ can be rewritten as $q_{ab} \, \mathrm{d}y^a \mathrm{d}y^b = (r_+^2 + a^2 \cos^2 \theta) \, \mathrm{d}\theta^2 + \frac{(r_+^2 + a^2)^2}{r_+^2 + a^2 \cos^2 \theta} \, \sin^2 \theta \, \mathrm{d}\tilde{\varphi}^2$ $\implies q := \det(q_{ab}) = (r_{\perp}^2 + a^2)^2 \sin^2 \theta$ $\implies A = (r_+^2 + a^2) \int_{\mathscr{S}} \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\tilde{\varphi}$ 4π $\implies A = 4\pi(r_+^2 + a^2) = 8\pi m r_+$ Since $r_+ := m + \sqrt{m^2 - a^2}$, we get $A = 8\pi m (m + \sqrt{m^2 - a^2})$

Éric Gourgoulhon

3

34 / 38

< □ > < □ > < □ > < □ > < □ > < □ >

Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient κ of the null normal $\chi = \xi + \Omega_H \eta$ to the event horizon \mathscr{H} (cf. lecture 1):

$$\nabla_{\chi} \chi \stackrel{\mathscr{H}}{=} \kappa \chi$$

Computation of κ : cf. the SageMath notebook http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/blob/ master/sage/Kerr_in_Kerr_coord.ipynb

$$\kappa = \frac{\sqrt{m^2 - a^2}}{2m(m + \sqrt{m^2 - a^2})}$$

<u> </u>	
 ooungounno.	

Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient κ of the null normal $\chi = \xi + \Omega_H \eta$ to the event horizon \mathscr{H} (cf. lecture 1):

$$\nabla_{\chi} \chi \stackrel{\mathscr{H}}{=} \kappa \chi$$

Computation of κ : cf. the SageMath notebook http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/blob/ master/sage/Kerr_in_Kerr_coord.ipynb

$$\kappa = \frac{\sqrt{m^2 - a^2}}{2m(m + \sqrt{m^2 - a^2})}$$

Remark: despite its name, κ is not the gravity felt by an observer staying a small distance of the horizon: the latter diverges as the distance decreases!

35 / 38

Outline

- 1 The Kerr solution in Boyer-Lindquist coordinates
- 2) Kerr coordinates
- 3 Horizons in the Kerr spacetime
- 4 Penrose process
- 6 Global quantities
- 6 The no-hair theorem

The no-hair theorem

Doroshkevich, Novikov & Zeldovich (1965), Israel (1967), Carter (1971), Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters:

- ullet the total mass M
- the total specific angular momentum a = J/M
- the total electric charge Q
- \implies "a black hole has no hair" (John A. Wheeler)

37 / 38

The no-hair theorem

Doroshkevich, Novikov & Zeldovich (1965), Israel (1967), Carter (1971), Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters:

- the total mass M
- the total specific angular momentum a = J/M
- the total electric charge Q

 \implies "a black hole has no hair" (John A. Wheeler)

Astrophysical black holes have to be electrically neutral:

- Q = 0: Kerr solution (1963)
- Q = 0 and a = 0: Schwarzschild solution (1916)
- $(Q \neq 0 \text{ and } a = 0: \text{ Reissner-Nordström solution (1916, 1918)})$

The no-hair theorem: a precise mathematical statement

Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is pseudo-stationary
- is a solution of the vacuum Einstein equation: $\operatorname{Ric}(\boldsymbol{g}) = 0$
- contains a black hole with a connected regular horizon
- has no closed timelike curve in the domain of outer communications (DOC) (= black hole exterior)
- is analytic

has a DOC that is isometric to the DOC of Kerr spacetime.

The no-hair theorem: a precise mathematical statement

Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is pseudo-stationary
- is a solution of the vacuum Einstein equation: $\operatorname{Ric}(\boldsymbol{g}) = 0$
- contains a black hole with a connected regular horizon
- has no closed timelike curve in the domain of outer communications (DOC) (= black hole exterior)
- is analytic

has a DOC that is isometric to the DOC of Kerr spacetime.

Possible improvements: remove the hypotheses of analyticity and non-existence of closed timelike curves (analyticity removed recently but only for slow rotation [Alexakis, Ionescu & Klainerman, Duke Math. J. **163**, 2603 (2014)])

Éric Gourgoulhon

Black hole physics 3

Les Houches, 5 July 2018

38 / 38