Introduction to black hole physics

3. The Kerr black hole

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris Diderot
Université Paris Sciences et Lettres
92190 Meudon, France
http://luth.obspm.fr/~luthier/gourgoulhon/leshouches18/

École de Physique des Houches 5 July 2018

Home page for the lectures

https://luth.obspm.fr/~luthier/gourgoulhon/ leshouches18/

Lecture 3: The Kerr black hole

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities
(6) The no-hair theorem

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities
(6) The no-hair theorem

The Kerr solution (1963)

Spacetime manifold

$$
\begin{gathered}
\mathscr{M}:=\mathbb{R}^{2} \times \mathbb{S}^{2} \backslash \mathscr{R} \\
\text { with } \mathscr{R}:=\left\{p \in \mathbb{R}^{2} \times \mathbb{S}^{2}, \quad r(p)=0 \text { and } \theta(p)=\frac{\pi}{2}\right\}, \\
(t, r) \text { spanning } \mathbb{R}^{2} \text { and }(\theta, \varphi) \text { spanning } \mathbb{S}^{2}
\end{gathered}
$$

Boyer-Lindquist (BL) coordinates (1967)

(t, r, θ, φ) with $t \in \mathbb{R}, r \in \mathbb{R}, \theta \in(0, \pi)$ and $\varphi \in(0,2 \pi)$

The Kerr solution (1963)

Spacetime metric

2 parameters (m, a) such that $0<a<m$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

where $\rho^{2}:=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta:=r^{2}-2 m r+a^{2}$
Some metric components diverge when

- $\rho=0 \Longleftrightarrow r=0$ and $\theta=\pi / 2$ (set \mathscr{R}, excluded from \mathscr{M})
- $\Delta=0 \Longleftrightarrow r=r_{+}:=m+\sqrt{m^{2}-a^{2}}$ or $r=r_{-}:=m-\sqrt{m^{2}-a^{2}}$

Define \mathscr{H} : hypersurface $r=r_{+}, \quad \mathscr{H}_{\text {in }}$: hypersurface $r=r_{-}$

Section of constant Boyer-Lindquist time coordinate

View of a section $t=$ const in O'Neill coord. (R, θ, φ) with $R:=\mathrm{e}^{r}$

Define three regions, bounded by \mathscr{H} or $\mathscr{H}_{\text {in }}$:
$\mathscr{M}_{\mathrm{I}}: r>r_{+}, \quad \mathscr{M}_{\mathrm{II}}: r_{-}<r<r_{+}, \quad \mathscr{M}_{\mathrm{III}}: r<r_{-}$

Basic properties of Kerr metric $(1 / 3)$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

- \boldsymbol{g} is a solution of the vacuum Einstein equation: $\operatorname{Ric}(\boldsymbol{g})=0$ See this SageMath notebook for an explicit check: http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/ blob/master/sage/Kerr_solution.ipynb

Basic properties of Kerr metric (2/3)

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

$$
\begin{aligned}
r \rightarrow \pm \infty \Longrightarrow & \rho^{2} \sim r^{2}, \rho^{2} / \Delta \sim(1-2 m / r)^{-1}, \\
& 4 a m r / \rho^{2} \mathrm{~d} t \mathrm{~d} \varphi \sim 4 a m / r^{2} \mathrm{~d} t r \mathrm{~d} \varphi \\
\Longrightarrow \mathrm{~d} s^{2} \sim \quad & (1-2 m / r) \mathrm{d} t^{2}+(1-2 m / r)^{-1} \mathrm{~d} r^{2} \\
+ & r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)+O\left(r^{-2}\right)
\end{aligned}
$$

\Longrightarrow Schwarzschild metric of mass m for $r>0$
Schwarzschild metric of (negative!) mass $m^{\prime}=-m$ for $r<0$

Basic properties of Kerr metric (3/3)

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

- $\partial g_{\alpha \beta} / \partial t=0 \Longrightarrow \boldsymbol{\xi}:=\partial_{t}$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})<0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathscr{M}, \boldsymbol{g})$ is pseudostationary

Basic properties of Kerr metric $(3 / 3)$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

- $\partial g_{\alpha \beta} / \partial t=0 \Longrightarrow \boldsymbol{\xi}:=\partial_{t}$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})<0$ for r large enough, which means that $\boldsymbol{\xi}$ is timelike, $(\mathscr{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0, g_{t \phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t=$ const $\Longrightarrow(\mathscr{M}, \boldsymbol{g})$ is not static

Basic properties of Kerr metric $(3 / 3)$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

- $\partial g_{\alpha \beta} / \partial t=0 \Longrightarrow \boldsymbol{\xi}:=\partial_{t}$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})<0$ for r large enough, which means that ξ is timelike, $(\mathscr{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0, g_{t \phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t=$ const $\Longrightarrow(\mathscr{M}, \boldsymbol{g})$ is not static
- $\partial g_{\alpha \beta} / \partial \varphi=0 \Longrightarrow \eta:=\partial_{\varphi}$ is a Killing vector; since η has closed field lines, the isometry group generated by it is $\mathrm{SO}(2) \Longrightarrow(\mathscr{M}, \boldsymbol{g})$ is axisymmetric

Basic properties of Kerr metric $(3 / 3)$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} t^{2}-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} t \mathrm{~d} \varphi+\frac{\rho^{2}}{\Delta} \mathrm{~d} r^{2}+\rho^{2} \mathrm{~d} \theta^{2} \\
& +\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \varphi^{2},
\end{aligned}
$$

- $\partial g_{\alpha \beta} / \partial t=0 \Longrightarrow \boldsymbol{\xi}:=\partial_{t}$ is a Killing vector; since $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})<0$ for r large enough, which means that ξ is timelike, $(\mathscr{M}, \boldsymbol{g})$ is pseudostationary
- if $a \neq 0, g_{t \phi} \neq 0 \Longrightarrow \boldsymbol{\xi}$ is not orthogonal to the hypersurface $t=$ const $\Longrightarrow(\mathscr{M}, \boldsymbol{g})$ is not static
- $\partial g_{\alpha \beta} / \partial \varphi=0 \Longrightarrow \eta:=\boldsymbol{\partial}_{\varphi}$ is a Killing vector; since η has closed field lines, the isometry group generated by it is $\mathrm{SO}(2) \Longrightarrow(\mathscr{M}, \boldsymbol{g})$ is axisymmetric
- when $a=0, g$ reduces to Schwarzschild metric (then the region $r \leq 0$ is excluded from the spacetime manifold)

Ergoregion

Scalar square of the pseudostationary Killing vector $\boldsymbol{\xi}=\partial_{t}$:
$\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})=g_{t t}=-1+\frac{2 m r}{r^{2}+a^{2} \cos ^{2} \theta}$
$\boldsymbol{\xi}$ timelike $\Longleftrightarrow \quad r<r_{\mathscr{E}^{-}}(\theta)$ or $r>r_{\mathscr{E}^{+}}(\theta)$ $r_{\mathscr{E} \pm}(\theta):=m \pm \sqrt{m^{2}-a^{2} \cos ^{2} \theta}$
$0 \leq r_{\mathscr{E}^{-}}(\theta) \leq r_{-} \leq m \leq r_{+} \leq r_{\mathscr{E}^{+}}(\theta) \leq 2 m$

Ergoregion

Scalar square of the pseudostationary Killing vector $\xi=\partial_{t}$:
$\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})=g_{t t}=-1+\frac{2 m r}{r^{2}+a^{2} \cos ^{2} \theta}$
$\boldsymbol{\xi}$ timelike $\Longleftrightarrow \quad r<r_{\mathscr{E}^{-}}(\theta)$ or $r>r_{\mathscr{E}^{+}}(\theta)$

$$
\begin{gathered}
r_{\mathscr{E}^{ \pm}}(\theta):=m \pm \sqrt{m^{2}-a^{2} \cos ^{2} \theta} \\
0 \leq r_{\mathscr{E}^{-}}(\theta) \leq r_{-} \leq m \leq r_{+} \leq r_{\mathscr{E}^{+}}(\theta) \leq 2 m
\end{gathered}
$$

Ergoregion: part \mathscr{G} of \mathscr{M} where ξ is spacelike Ergosphere: boundary \mathscr{E} of the ergoregion: $r=r_{\mathscr{E} \pm}(\theta)$
\mathscr{G} encompasses all $\mathscr{M}_{\text {II }}$, the part of \mathscr{M}_{I} where $r<r_{\mathscr{E}^{+}}(\theta)$ and the part of $\mathscr{M}_{\text {III }}$ where $r>r_{\mathscr{E}^{-}}(\theta)$
Remark: at the Schwarzschild limit, $a=0 \Longrightarrow r_{\mathscr{E}^{+}}(\theta)=2 m$
$\Longrightarrow \mathscr{G}=$ black hole region

Ergoregion

Meridional slice $t=t_{0}, \phi \in\{0, \pi\}$ viewed in O'Neill coordinates grey: ergoregion; yellow: Carter time machine; red: ring singularity

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities
(6) The no-hair theorem

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of) Kerr coordinates ($\tilde{t}, r, \theta, \tilde{\varphi}$) by

$$
\begin{aligned}
& \left\{\begin{aligned}
\mathrm{d} \tilde{t} & =\mathrm{d} t+\frac{2 m r}{\Delta} \mathrm{~d} r \\
\mathrm{~d} \tilde{\varphi} & =\mathrm{d} \varphi+\frac{a}{\Delta} \mathrm{~d} r
\end{aligned}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\tilde{t}=t+\frac{m}{\sqrt{m^{2}-a^{2}}}\left(r_{+}+\ln \left|\frac{r-r_{+}}{2 m}\right|-r_{-} \ln \left|\frac{r-r_{-}}{2 m}\right|\right) \\
\tilde{\varphi}=\varphi+\frac{a}{2 \sqrt{m^{2}-a^{2}}} \ln \left|\frac{r-r_{+}}{r-r_{-}}\right|
\end{array}\right.
\end{aligned}
$$

From Boyer-Lindquist to Kerr coordinates

Introduce (3+1 version of) Kerr coordinates ($\tilde{t}, r, \theta, \tilde{\varphi}$) by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{d} \tilde{t}=\mathrm{d} t+\frac{2 m r}{\Delta} \mathrm{~d} r \\
\mathrm{~d} \tilde{\varphi}=\mathrm{d} \varphi+\frac{a}{\Delta} \mathrm{~d} r
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\tilde{t}=t+\frac{m}{\sqrt{m^{2}-a^{2}}}\left(r_{+} \ln \left|\frac{r-r_{+}}{2 m}\right|-r_{-} \ln \left|\frac{r-r_{-}}{2 m}\right|\right) \\
\tilde{\varphi}=\varphi+\frac{a}{2 \sqrt{m^{2}-a^{2}}} \ln \left|\frac{r-r_{+}}{r-r_{-}}\right|
\end{array}\right.
\end{aligned}
$$

Reduce to ingoing Eddington-Finkelstein coordinates when $a \rightarrow 0\left(r_{+} \rightarrow 2 m, r_{-} \rightarrow 0\right)$:

$$
\left\{\begin{aligned}
\tilde{t} & =t+2 m \ln \left|\frac{r}{2 m}-1\right| \\
\tilde{\varphi} & =\varphi
\end{aligned}\right.
$$

Kerr coordinates

Spacetime metric in Kerr coordinates

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} \tilde{t}^{2}+\frac{4 m r}{\rho^{2}} \mathrm{~d} \tilde{t} \mathrm{~d} r-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} \tilde{t} \mathrm{~d} \tilde{\varphi} \\
& +\left(1+\frac{2 m r}{\rho^{2}}\right) \mathrm{d} r^{2}-2 a\left(1+\frac{2 m r}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \tilde{\varphi} \\
& +\rho^{2} \mathrm{~d} \theta^{2}+\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \tilde{\varphi}^{2} .
\end{aligned}
$$

Note

- contrary to Boyer-Lindquist ones, the metric components are regular where $\Delta=0$, i.e. at $r=r_{+}(\mathscr{H})$ and $r=r_{-}\left(\mathscr{H}_{\text {in }}\right)$
- the two Killing vectors $\boldsymbol{\xi}$ and η coincide with the coordinate vectors corresponding to \tilde{t} and $\tilde{\varphi}: \xi=\partial_{\tilde{t}}$ and $\boldsymbol{\eta}=\boldsymbol{\partial}_{\tilde{\varphi}}$

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities

6 The no-hair theorem

Constant- r hypersurfaces

A normal to any $r=$ const hypersurface is $n:=\rho^{2} \vec{\nabla} r$, where $\vec{\nabla} r$ is the gradient of $r: \nabla^{\alpha} r=g^{\alpha \mu} \partial_{\mu} r=g^{\alpha r}=\left(\frac{2 m r}{\rho^{2}}, \frac{\Delta}{\rho^{2}}, 0, \frac{a}{\rho^{2}}\right)$

$$
\Longrightarrow \boldsymbol{n}=2 m r \boldsymbol{\partial}_{\tilde{t}}+\Delta \boldsymbol{\partial}_{\tilde{r}}+a \boldsymbol{\partial}_{\tilde{\varphi}}
$$

One has
$\boldsymbol{g}(\boldsymbol{n}, \boldsymbol{n})=g_{\mu \nu} n^{\mu} n^{\nu}=g_{\mu \nu} \rho^{2} \nabla^{\mu} r n^{\nu}=\rho^{2} \nabla_{\nu} r n^{\nu}=\rho^{2} \partial_{\nu} r n^{\nu}=\rho^{2} n^{r}$ hence

$$
\boldsymbol{g}(\boldsymbol{n}, \boldsymbol{n})=\rho^{2} \Delta
$$

Constant- r hypersurfaces

A normal to any $r=$ const hypersurface is $n:=\rho^{2} \vec{\nabla} r$, where $\vec{\nabla} r$ is the gradient of $r: \nabla^{\alpha} r=g^{\alpha \mu} \partial_{\mu} r=g^{\alpha r}=\left(\frac{2 m r}{\rho^{2}}, \frac{\Delta}{\rho^{2}}, 0, \frac{a}{\rho^{2}}\right)$

$$
\Longrightarrow \boldsymbol{n}=2 m r \partial_{\tilde{t}}+\Delta \boldsymbol{\partial}_{\tilde{r}}+a \boldsymbol{\partial}_{\tilde{\varphi}}
$$

One has
$\boldsymbol{g}(\boldsymbol{n}, \boldsymbol{n})=g_{\mu \nu} n^{\mu} n^{\nu}=g_{\mu \nu} \rho^{2} \nabla^{\mu} r n^{\nu}=\rho^{2} \nabla_{\nu} r n^{\nu}=\rho^{2} \partial_{\nu} r n^{\nu}=\rho^{2} n^{r}$ hence

$$
\boldsymbol{g}(\boldsymbol{n}, \boldsymbol{n})=\rho^{2} \Delta
$$

Given that $\Delta=\left(r-r_{-}\right)\left(r-r_{+}\right)$, we conclude:

- The hypersurfaces $r=$ const are timelike in \mathscr{M}_{I} and $\mathscr{M}_{\text {III }}$
- The hypersurfaces $r=$ const are spacelike in $\mathscr{M}_{\text {II }}$
- \mathscr{H} (where $r=r_{+}$) and $\mathscr{H}_{\text {in }}$ (where $r=r_{-}$) are null hypersurfaces

Killing horizons

The (null) normals to the null hypersurfaces \mathscr{H} and $\mathscr{H}_{\text {in }}$ are

$$
\boldsymbol{n}=\underbrace{2 m r}_{2 m r_{ \pm}} \underbrace{\boldsymbol{\partial}_{\tilde{t}}}_{\boldsymbol{\xi}}+\underbrace{\Delta}_{0} \boldsymbol{\partial}_{\tilde{r}}+a \underbrace{\boldsymbol{\partial}_{\tilde{\varphi}}}_{\eta}=2 m r_{ \pm} \boldsymbol{\xi}+a \boldsymbol{\eta}
$$

On \mathscr{H}, let us consider the rescaled null normal $\boldsymbol{\chi}:=\left(2 m r_{+}\right)^{-1} \boldsymbol{n}$:

$$
\chi=\boldsymbol{\xi}+\Omega_{H} \boldsymbol{\eta}
$$

with

$$
\Omega_{H}:=\frac{a}{2 m r_{+}}=\frac{a}{r_{+}^{2}+a^{2}}=\frac{a}{2 m\left(m+\sqrt{m^{2}-a^{2}}\right)}
$$

Killing horizons

The (null) normals to the null hypersurfaces \mathscr{H} and $\mathscr{H}_{\text {in }}$ are

$$
\boldsymbol{n}=\underbrace{2 m r}_{2 m r_{ \pm}} \underbrace{\boldsymbol{\partial}_{\tilde{t}}}_{\boldsymbol{\xi}}+\underbrace{\Delta}_{0} \boldsymbol{\partial}_{\tilde{r}}+a \underbrace{\boldsymbol{\partial}_{\tilde{\varphi}}}_{\eta}=2 m r_{ \pm} \boldsymbol{\xi}+a \boldsymbol{\eta}
$$

On \mathscr{H}, let us consider the rescaled null normal $\chi:=\left(2 m r_{+}\right)^{-1} \boldsymbol{n}$:

$$
\chi=\boldsymbol{\xi}+\Omega_{H} \boldsymbol{\eta}
$$

with

$$
\Omega_{H}:=\frac{a}{2 m r_{+}}=\frac{a}{r_{+}^{2}+a^{2}}=\frac{a}{2 m\left(m+\sqrt{m^{2}-a^{2}}\right)}
$$

$\chi=$ linear combination with constant coefficients of the Killing vectors ξ and $\eta \Longrightarrow \chi$ is a Killing vector. Hence

The null hypersurface \mathscr{H} defined by $r=r_{+}$is a Killing horizon
Similarly
The null hypersurface $\mathscr{H}_{\text {in }}$ defined by $r=r_{-}$is a Killing horizon

Killing horizon \mathscr{H}

Null normal to $\mathscr{H}: \chi=\boldsymbol{\xi}+\Omega_{H} \boldsymbol{\eta}$ (on the picture $\ell \propto \chi$)
$\Longrightarrow \Omega_{H} \sim$ "angular velocity" of \mathscr{H} \Longrightarrow rigid rotation (Ω_{H} independent of θ)
$N B$: since \mathscr{H} is inside the ergoregion, ξ is spacelike on \mathscr{H}

Two views of the horizon \mathscr{H}

null geodesic generators drawn vertically

field lines of Killing vector $\boldsymbol{\xi}$ drawn vertically

The Killing horizon \mathscr{H} is an event horizon

\leftarrow Principal
null geodesics for $a / m=0.9$

Recall: for
$r \rightarrow+\infty$, Kerr metric \sim
Schwarzschild metric
\Longrightarrow same asymptotic structure
\Longrightarrow same \mathscr{I}^{+}

\mathscr{H} is a black hole event horizon

What happens for $a \geq m$?

$$
\Delta:=r^{2}-2 m r+a^{2}
$$

$a=m$: extremal Kerr black hole
$a=m \Longleftrightarrow \Delta=(r-m)^{2}$
\Longleftrightarrow double root: $r_{+}=r_{-}=m \Longleftrightarrow \mathscr{H}$ and $\mathscr{H}_{\text {in }}$ coincide
$a>m$: naked singularity
$a>m \Longleftrightarrow \Delta>0$
$\Longleftrightarrow \boldsymbol{g}(\boldsymbol{n}, \boldsymbol{n})=\rho^{2} \Delta>0 \Longleftrightarrow$ all hypersurfaces $r=$ const are timelike
\Longleftrightarrow any of them can be crossed in the direction of increasing r
\Longleftrightarrow no horizon \Longleftrightarrow no black hole
\Longleftrightarrow the curvature singularity at $\rho^{2}=0$ is naked

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates

(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process

(5) Global quantities

6 The no-hair theorem

Penrose process

Particle $\mathscr{P}(4$-momentum p) in free fall from infinity into the ergoregion \mathscr{G}. At point $A \in \mathscr{G}, \mathscr{P}$ splits (or decays) into

- particle \mathscr{P}^{\prime} (4-momentum p^{\prime}), which leaves to infinity
- particle $\mathscr{P}^{\prime \prime}$ (4-momentum $p^{\prime \prime}$), which falls into the black hole

Energy gain: $\Delta E=E_{\text {out }}-E_{\text {in }}$
with $E_{\text {in }}=-\left.\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})\right|_{\infty}$ and $E_{\text {out }}=-\left.\boldsymbol{g}\left(\boldsymbol{\xi}, \boldsymbol{p}^{\prime}\right)\right|_{\infty}$
since at infinity, $\boldsymbol{\xi}=\partial_{t}$ is the 4 -velocity of the inertial observer at rest with respect to the black hole.

Recall 1: measured energy and 3-momentum

Recall 2: conserved quantity along a geodesic

Geodesic Noether's theorem

Assume

- $(\mathscr{M}, \boldsymbol{g})$ is a spacetime endowed with a 1-parameter symmetry group, generated by the Killing vector $\boldsymbol{\xi}$
- \mathscr{L} is geodesic of $(\mathscr{M}, \boldsymbol{g})$ with tangent vector field p : $\nabla_{p} p=0$
Then the scalar product $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})$ is constant along \mathscr{L}.

Recall 2: conserved quantity along a geodesic

Geodesic Noether's theorem

Assume

- $(\mathscr{M}, \boldsymbol{g})$ is a spacetime endowed with a 1-parameter symmetry group, generated by the Killing vector $\boldsymbol{\xi}$
- \mathscr{L} is geodesic of $(\mathscr{M}, \boldsymbol{g})$ with tangent vector field p : $\nabla_{p} p=0$
Then the scalar product $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})$ is constant along \mathscr{L}.
Proof:

$$
\begin{aligned}
\nabla_{\boldsymbol{p}}(\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})) & =p^{\sigma} \nabla_{\sigma}\left(g_{\mu \nu} \xi^{\mu} p^{\nu}\right)=p^{\sigma} \nabla_{\sigma}\left(\xi_{\nu} p^{\nu}\right)=\nabla_{\sigma} \xi_{\nu} p^{\sigma} p^{\nu}+\xi_{\nu} p^{\sigma} \nabla_{\sigma} p^{\nu} \\
& =\frac{1}{2}(\underbrace{\nabla_{\sigma} \xi_{\nu}+\nabla_{\nu} \xi_{\sigma}}_{0}) p^{\sigma} p^{\nu}+\xi_{\nu} \underbrace{p^{\sigma} \nabla_{\sigma} p^{\nu}}_{0}=0
\end{aligned}
$$

Penrose process

Geodesic Noether's theorem:

$$
\begin{aligned}
\Delta E & =-\left.\boldsymbol{g}\left(\boldsymbol{\xi}, \boldsymbol{p}^{\prime}\right)\right|_{A}+\left.\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})\right|_{A} \\
& =\left.\boldsymbol{g}\left(\boldsymbol{\xi}, \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)\right|_{A}
\end{aligned}
$$

Penrose process

$$
\Delta E=-\left.g\left(\xi, p^{\prime}\right)\right|_{\infty}+\left.g(\xi, p)\right|_{\infty}
$$

Geodesic Noether's theorem:

$$
\begin{aligned}
\Delta E & =-\left.\boldsymbol{g}\left(\boldsymbol{\xi}, \boldsymbol{p}^{\prime}\right)\right|_{A}+\left.\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{p})\right|_{A} \\
& =\left.\boldsymbol{g}\left(\boldsymbol{\xi}, \boldsymbol{p}-\boldsymbol{p}^{\prime}\right)\right|_{A}
\end{aligned}
$$

Conservation of energy-momentum at event $A:\left.p\right|_{A}=\left.p^{\prime}\right|_{A}+\left.p^{\prime \prime}\right|_{A}$

$$
\left.\Longrightarrow p\right|_{A}-\left.p^{\prime}\right|_{A}=\left.p^{\prime \prime}\right|_{A}
$$

Now

$$
\Longrightarrow \Delta E=\left.g\left(\xi, p^{\prime \prime}\right)\right|_{A}
$$

- $p^{\prime \prime}$ is a future-directed timelike or null vector
- $\boldsymbol{\xi}$ is a spacelike vector in the ergoregion
\Longrightarrow one may choose some trajectory so that $\left.g\left(\xi, p^{\prime \prime}\right)\right|_{A}>0$
$\Longrightarrow \Delta E>0$, i.e. energy is extracted from the rotating black hole!

Penrose process at work

Jet emitted by the nucleus of the giant elliptic galaxy M87, at the centre of Virgo cluster [HST]

$$
\begin{aligned}
& M_{\mathrm{BH}}=3 \times 10^{9} M_{\odot} \\
& V_{\mathrm{jet}} \simeq 0.99 \mathrm{c}
\end{aligned}
$$

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities

6 The no-hair theorem

Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

$$
M=-\frac{1}{8 \pi} \int_{\mathscr{S}} \nabla^{\mu} \xi^{\nu} \epsilon_{\mu \nu \alpha \beta}
$$

- \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- ξ : stationary Killing vector, normalized to $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})=-1$ at infinity
- ϵ : volume 4 -form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law)

Mass

Total mass of a (pseudo-)stationary spacetime (Komar integral)

$$
M=-\frac{1}{8 \pi} \int_{\mathscr{S}} \nabla^{\mu} \xi^{\nu} \epsilon_{\mu \nu \alpha \beta}
$$

- \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- ξ : stationary Killing vector, normalized to $\boldsymbol{g}(\boldsymbol{\xi}, \boldsymbol{\xi})=-1$ at infinity
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: M measurable from the orbital period of a test particle in far circular orbit around the black hole (Kepler's third law) For a Kerr spacetime of parameters (m, a) :

$$
M=m
$$

Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

$$
J=\frac{1}{16 \pi} \int_{\mathscr{S}} \nabla^{\mu} \eta^{\nu} \epsilon_{\mu \nu \alpha \beta}
$$

- \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- η : axisymmetric Killing vector
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: J measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect)

Angular momentum

Total angular momentum of an axisymmetric spacetime (Komar integral)

$$
J=\frac{1}{16 \pi} \int_{\mathscr{S}} \nabla^{\mu} \eta^{\nu} \epsilon_{\mu \nu \alpha \beta}
$$

- \mathscr{S} : any closed spacelike 2-surface located in the vacuum region
- η : axisymmetric Killing vector
- ϵ : volume 4-form associated to g (Levi-Civita tensor)

Physical interpretation: J measurable from the precession of a gyroscope orbiting the black hole (Lense-Thirring effect) For a Kerr spacetime of parameters (m, a) :

$$
J=a m
$$

Black hole area

As a non-expanding horizon, \mathscr{H} has a well-defined (cross-section independent) area A :

$$
A=\int_{\mathscr{S}} \sqrt{q} \mathrm{~d} \theta \mathrm{~d} \tilde{\varphi}
$$

- $\mathscr{S}:$ cross-section defined in terms of Kerr coordinates by $\left\{\begin{array}{l}\tilde{t}=\tilde{t}_{0} \\ r=r_{+}\end{array}\right.$ \Longrightarrow coordinates spanning $\mathscr{S}: y^{a}=(\theta, \tilde{\varphi})$
- $q:=\operatorname{det}\left(q_{a b}\right)$, with $q_{a b}$ components of the Riemannian metric q induced on \mathscr{S} by the spacetime metric g

Black hole area

Evaluating \boldsymbol{q} : set $\mathrm{d} \tilde{t}=0, \mathrm{~d} r=0$, and $r=r_{+}$in the expression of g in terms of the Kerr coordinates:

$$
\begin{aligned}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}= & -\left(1-\frac{2 m r}{\rho^{2}}\right) \mathrm{d} \tilde{t}^{2}+\frac{4 m r}{\rho^{2}} \mathrm{~d} \tilde{t} \mathrm{~d} r-\frac{4 a m r \sin ^{2} \theta}{\rho^{2}} \mathrm{~d} \tilde{t} \mathrm{~d} \tilde{\varphi} \\
& +\left(1+\frac{2 m r}{\rho^{2}}\right) \mathrm{d} r^{2}-2 a\left(1+\frac{2 m r}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \tilde{\varphi} \\
& +\rho^{2} \mathrm{~d} \theta^{2}+\left(r^{2}+a^{2}+\frac{2 a^{2} m r \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta \mathrm{~d} \tilde{\varphi}^{2} .
\end{aligned}
$$

and get
$q_{a b} \mathrm{~d} y^{a} \mathrm{~d} y^{b}=\left(r_{+}^{2}+a^{2} \cos ^{2} \theta\right) \mathrm{d} \theta^{2}+\left(r_{+}^{2}+a^{2}+\frac{2 a^{2} m r_{+} \sin ^{2} \theta}{r_{+}^{2}+a^{2} \cos ^{2} \theta}\right) \sin ^{2} \theta \mathrm{~d} \tilde{\varphi}^{2}$

Black hole area

r_{+}is a zero of $\Delta:=r^{2}-2 m r+a^{2} \Longrightarrow 2 m r_{+}=r_{+}^{2}+a^{2}$

$\Longrightarrow q_{a b}$ can be rewritten as

$$
\begin{aligned}
& q_{a b} \mathrm{~d} y^{a} \mathrm{~d} y^{b}=\left(r_{+}^{2}+a^{2} \cos ^{2} \theta\right) \mathrm{d} \theta^{2}+\frac{\left(r_{+}^{2}+a^{2}\right)^{2}}{r_{+}^{2}+a^{2} \cos ^{2} \theta} \sin ^{2} \theta \mathrm{~d} \tilde{\varphi}^{2} \\
& \Longrightarrow q:=\operatorname{det}\left(q_{a b}\right)=\left(r_{+}^{2}+a^{2}\right)^{2} \sin ^{2} \theta \\
& \Longrightarrow A=\left(r_{+}^{2}+a^{2}\right) \underbrace{\int_{\mathscr{S}} \sin \theta \mathrm{d} \theta \mathrm{~d} \tilde{\varphi}}_{4 \pi} \\
& \Longrightarrow A=4 \pi\left(r_{+}^{2}+a^{2}\right)=8 \pi m r_{+}
\end{aligned}
$$

Since $r_{+}:=m+\sqrt{m^{2}-a^{2}}$, we get

$$
A=8 \pi m\left(m+\sqrt{m^{2}-a^{2}}\right)
$$

Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient κ of the null normal $\chi=\xi+\Omega_{H} \boldsymbol{\eta}$ to the event horizon \mathscr{H} (cf. lecture 1):

$$
\nabla_{\chi} \chi \stackrel{\mathscr{H}}{=} \kappa \chi
$$

Computation of κ : cf. the SageMath notebook
http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/blob/ master/sage/Kerr_in_Kerr_coord.ipynb

$$
\kappa=\frac{\sqrt{m^{2}-a^{2}}}{2 m\left(m+\sqrt{m^{2}-a^{2}}\right)}
$$

Black hole surface gravity

Surface gravity: name given to the non-affinity coefficient κ of the null normal $\chi=\xi+\Omega_{H} \boldsymbol{\eta}$ to the event horizon \mathscr{H} (cf. lecture 1):

$$
\nabla_{\chi} \chi \stackrel{\mathscr{H}}{=} \kappa \chi
$$

Computation of κ : cf. the SageMath notebook
http://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/blob/ master/sage/Kerr_in_Kerr_coord.ipynb

$$
\kappa=\frac{\sqrt{m^{2}-a^{2}}}{2 m\left(m+\sqrt{m^{2}-a^{2}}\right)}
$$

Remark: despite its name, κ is not the gravity felt by an observer staying a small distance of the horizon: the latter diverges as the distance decreases!

Outline

(1) The Kerr solution in Boyer-Lindquist coordinates
(2) Kerr coordinates
(3) Horizons in the Kerr spacetime

4 Penrose process
(5) Global quantities
(6) The no-hair theorem

The no-hair theorem

Doroshkevich, Novikov \& Zeldovich (1965), Israel (1967), Carter (1971), Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters:

- the total mass M
- the total specific angular momentum $a=J / M$
- the total electric charge Q
\Longrightarrow "a black hole has no hair" (John A. Wheeler)

The no-hair theorem

> Doroshkevich, Novikov \& Zeldovich (1965), Israel (1967), Carter (1971), Hawking (1972), Robinson (1975)

Within 4-dimensional general relativity, a stationary black hole in an otherwise empty universe is necessarily a Kerr-Newmann black hole, which is an electro-vacuum solution of Einstein equation described by only 3 parameters:

- the total mass M
- the total specific angular momentum $a=J / M$
- the total electric charge Q
\Longrightarrow "a black hole has no hair" (John A. Wheeler)
Astrophysical black holes have to be electrically neutral:
- $Q=0$: Kerr solution (1963)
- $Q=0$ and $a=0$: Schwarzschild solution (1916)
- $(Q \neq 0$ and $a=0$: Reissner-Nordström solution (1916, 1918))

The no-hair theorem: a precise mathematical statement

Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is pseudo-stationary
- is a solution of the vacuum Einstein equation: $\operatorname{Ric}(\boldsymbol{g})=0$
- contains a black hole with a connected regular horizon
- has no closed timelike curve in the domain of outer communications (DOC) (= black hole exterior)
- is analytic
has a DOC that is isometric to the DOC of Kerr spacetime.

The no-hair theorem: a precise mathematical statement

Any spacetime $(\mathscr{M}, \boldsymbol{g})$ that

- is 4-dimensional
- is asymptotically flat
- is pseudo-stationary
- is a solution of the vacuum Einstein equation: $\operatorname{Ric}(\boldsymbol{g})=0$
- contains a black hole with a connected regular horizon
- has no closed timelike curve in the domain of outer communications (DOC) (= black hole exterior)
- is analytic
has a DOC that is isometric to the DOC of Kerr spacetime.
Possible improvements: remove the hypotheses of analyticity and non-existence of closed timelike curves (analyticity removed recently but only for slow rotation [Alexakis, Ionescu \& Klainerman, Duke Math. J. 163, 2603 (2014)])

