Figures of lecture 1

Definition and main properties of black holes

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) Observatoire de Paris, CNRS, Université PSL, Université Paris Cité Meudon, France

https://relativite.obspm.fr/blackholes/paris23/

PSL graduate programs in Physics and in Astrophysics ENS, Paris, France 10 May 2023

1/13

https://relativite.obspm.fr/blackholes/paris23

includes

- the lecture notes (draft)
- some SageMath notebooks
- these slides

Spacetime

$\mathsf{spacetime} = (\mathscr{M}, \boldsymbol{g})$

- \mathcal{M} : *n*-dimensional smooth manifold
- g: Lorentzian metric on M

Smooth manifold:

topological space \mathscr{M} that locally resembles \mathbb{R}^n (but maybe not globally) \implies coordinate charts \implies tangent vectors

Remark: vector connecting two points p and q defined only for pand q infinitely close

- A 🖻 🕨

Metric's null cone

Vector $\boldsymbol{v} \in T_p \mathscr{M}$ is

• spacelike $\iff {old g}({old v},{old v})>0$

• null
$$\iff \boldsymbol{g}(\boldsymbol{v}, \boldsymbol{v}) = 0$$

• timelike
$$\iff \boldsymbol{g}(\boldsymbol{v}, \boldsymbol{v}) < 0$$

Additional assumption:

the spacetime (\mathcal{M}, g) is time-oriented \implies future and past directions continuously defined over all \mathcal{M}

Image: Image:

Lorentzian manifold $(\mathcal{M}, \boldsymbol{g})$

5/13

э

< ロト < 回 > < 回 > < 回 > < 回 >

Worldlines

Particle described by its spacetime extent: worldline $\mathscr L$

massive part. \iff timelike worldline massless part. \iff null worldline (tachyon \iff spacelike worldline)

Dynamics of a *simple* particle (no spin, no internal structure) entirely described by a future-directed vector field tangent to the worldline: the **energy-momentum** p

r

Particle's mass:

$$n = \sqrt{-\boldsymbol{g}(\boldsymbol{p}, \boldsymbol{p})}$$

Three kinds of hypersurfaces

Boundary in spacetime $\Longrightarrow (n-1)\text{-dimensional submanifold, i.e.}$ hypersurface

Locally, a hypersurface Σ can be of one of 3 types:

Timelike hypersurface

For worldlines \mathscr{L} directed towards the future:

timelike hypersurface = 2-way membrane

 \implies not eligible for a black hole boundary

Spacelike hypersurface

For worldlines \mathscr{L} directed towards the future:

spacelike hypersurface = 1-way membrane ⇒ eligible for a black hole boundary

Null hypersurface

For worldlines \mathscr{L} directed towards the future:

null hypersurface = 1-way membrane

 \implies eligible for a black hole boundary...

ENS, Paris, 10 May 2023 10 / 13

Null hypersurface

For worldlines \mathscr{L} directed towards the future:

null hypersurface = 1-way membrane

 \implies eligible for a black hole boundary...

...and elected! (as a consequence of the formal definition of a black hole, to be given later)

The event horizon of a black hole is a topological hypersurface of spacetime. Wherever it is smooth, it is a null hypersurface.

Conformal completion of Minkowski spacetime Embedding into the Einstein cylinder

cf. https://nbviewer.org/github/egourgoulhon/BHLectures/blob/master/sage/ conformal_Minkowski.ipynb for an interactive 3D view

Éric Gourgoulhon (LUTH)

Introduction to black hole physics 1

ENS, Paris, 10 May 2023 11/13

Event horizon of a binary black hole merger

Head-on merger

[R.A. Matzner et al., Science 270, 941 (1995)]

Éric Gourgoulhon (LUTH)

Introduction to black hole physics 1

ENS, Paris, 10 May 2023 12 / 13

Event horizon of a binary black hole merger

Head-on merger

[Cohen, Pfeiffer & Scheel, CQG 26, 035005 (2009)]

Éric Gourgoulhon (LUTH)

Introduction to black hole physics 1 ENS, Paris, 10 May 2023 13/13